Resch, B., Kurath-Koller, S., Eibisberger, M. & Zenz, W. Prematurity and the burden of influenza and respiratory syncytial virus disease. World J. Pediatr. 12, 8–18 (2016).
Dawood, F. S. et al. Burden of seasonal influenza hospitalization in children, United States, 2003 to 2008. J. Pediatr. 157, 808–814 (2010).
Siegrist, C. A. Neonatal and early life vaccinology. Vaccine 19, 3331–3346 (2001).
Mohr, E. & Siegrist, C. A. Vaccination in early life: standing up to the challenges. Curr. Opin. Immunol. 41, 1–8 (2016).
Adkins, B., Leclerc, C. & Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004).
Yu, J. C. et al. Innate immunity of neonates and infants. Front Immunol. 9, 1759 (2018).
PubMed PubMed Central Google Scholar
Ogra, P. L., Welliver, R. C., Riepenhoff-Talty, M. & Faden, H. S. Interaction of mucosal immune system and infections in infancy: implications in allergy. Ann. Allergy 53, 523–534 (1984).
Wilcox, D. R., Folmsbee, S. S., Muller, W. J. & Longnecker, R. The Type I interferon response determines differences in choroid plexus susceptibility between newborns and adults in herpes simplex virus encephalitis. MBio 7, e00437–00416 (2016).
CAS PubMed PubMed Central Google Scholar
McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).
CAS PubMed PubMed Central Google Scholar
Jewell, N. A. et al. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J. Virol. 81, 9790–9800 (2007).
CAS PubMed PubMed Central Google Scholar
Bogunovic, D. Type I interferons in newborns-neurotoxicity versus antiviral defense. MBio 7, e00639–16 (2016).
Crotta, S. et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog. 9, e1003773 (2013).
PubMed PubMed Central Google Scholar
Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon alphabeta in acute influenza infection. Nat. Commun. 5, 3864 (2014).
Davidson, S. et al. IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment. EMBO Mol. Med. 8, 1099–1112 (2016).
CAS PubMed PubMed Central Google Scholar
Durbin, J. E. et al. Type I IFN modulates innate and specific antiviral immunity. J. Immunol. 164, 4220–4228 (2000).
Durbin, J. E. et al. The role of IFN in respiratory syncytial virus pathogenesis. J. Immunol. 168, 2944–2952 (2002).
Durbin, R. K., Kotenko, S. V. & Durbin, J. E. Interferon induction and function at the mucosal surface. Immunol. Rev. 255, 25–39 (2013).
PubMed PubMed Central Google Scholar
Arimori, Y. et al. Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antivir. Res. 99, 230–237 (2013).
Klinkhammer, J. et al. IFN-lambda prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife 7, e33354 (2018).
Galani, I. E. et al. Interferon-lambda mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890 e876 (2017).
Lazear, H. M. & Diamond, M. S. New insights into innate immune restriction of West Nile virus infection. Curr. Opin. Virol. 11, 1–6 (2015).
Wack, A., Terczynska-Dyla, E. & Hartmann, R. Guarding the frontiers: the biology of type III interferons. Nat. Immunol. 16, 802–809 (2015).
CAS PubMed PubMed Central Google Scholar
Akaike, T. et al. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc. Natl Acad. Sci. USA 93, 2448–2453 (1996).
CAS PubMed PubMed Central Google Scholar
Lin, X. et al. The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) Overexpression. Viruses 8, 13 (2016).
Hosakote, Y. M., Liu, T., Castro, S. M., Garofalo, R. P. & Casola, A. Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am. J. Respir. Cell Mol. Biol. 41, 348–357 (2009).
CAS PubMed PubMed Central Google Scholar
Sgarbanti, R. et al. Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid. Redox Signal. 15, 593–606 (2011).
Knobil, K., Choi, A. M., Weigand, G. W. & Jacoby, D. B. Role of oxidants in influenza virus-induced gene expression. Am. J. Physiol. 274, L134–L142 (1998).
Bhattacharya, A. et al. Superoxide dismutase 1 protects hepatocytes from type i interferon-driven oxidative damage. Immunity 43, 974–986 (2015).
CAS PubMed PubMed Central Google Scholar
O’Donovan, D. J. & Fernandes, C. J. Free radicals and diseases in premature infants. Antioxid. Redox Signal 6, 169–176 (2004).
Buonocore, G., Perrone, S. & Tataranno, M. L. Oxidative stress in the newborn. Oxid. Med. Cell. Longev. 2017, 1094247 (2017).
PubMed PubMed Central Google Scholar
Perez, M., Robbins, M. E., Revhaug, C. & Saugstad, O. D. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 142, 61–72 (2019).
CAS PubMed PubMed Central Google Scholar
Saugstad, O. D. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol. 8, 39–49 (2003).
Kumova, O. K. et al. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog. 15, e1008072 (2019).
CAS PubMed PubMed Central Google Scholar
Carey, A. J. et al. Rapid evolution of the CD8+ TCR repertoire in neonatal mice. J. Immunol. 196, 2602–2613 (2016).
Virus interference: I. The interferon. By Alick Isaacs and Jean Lindenmann, 1957. CA Cancer J Clin 38, 280–290 (1988).
Ericsson, A. C. et al. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci. Rep. 8, 4065 (2018).
PubMed PubMed Central Google Scholar
Koerner, I., Kochs, G., Kalinke, U., Weiss, S. & Staeheli, P. Protective role of beta interferon in host defense against influenza A virus. J. Virol. 81, 2025–2030 (2007).
Wu, W. et al. Early IFN-beta administration protects cigarette smoke exposed mice against lethal influenza virus infection without increasing lung inflammation. Sci. Rep. 12, 4080 (2022).
CAS PubMed PubMed Central Google Scholar
Yoo, J. K., Baker, D. P. & Fish, E. N. Interferon-beta modulates type 1 immunity during influenza virus infection. Antivir. Res. 88, 64–71 (2010).
Drajac, C. et al. Control of IFN-I responses by the aminopeptidase IRAP in neonatal C57BL/6 alveolar macrophages during RSV infection. Mucosal Immunol. 14, 949–962 (2021).
CAS PubMed PubMed Central Google Scholar
Lin, S. J. et al. The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J. Biomed. Sci. 21, 99 (2014).
PubMed PubMed Central Google Scholar
La Gruta, N. L., Kedzierska, K., Stambas, J. & Doherty, P. C. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol. 85, 85–92 (2007).
Terrazas, C. et al. Ly6C(hi) inflammatory monocytes promote susceptibility to Leishmania donovani infection. Sci. Rep. 7, 14693 (2017).
PubMed PubMed Central Google Scholar
Ng, S. L., Teo, Y. J., Setiagani, Y. A., Karjalainen, K. & Ruedl, C. Type 1 conventional CD103(+) dendritic cells control effector CD8(+) T cell migration, survival, and memory responses during influenza infection. Front. Immunol. 9, 3043 (2018).
CAS PubMed PubMed Central Google Scholar
Glennon-Alty, L., Moots, R. J., Edwards, S. W. & Wright, H. L. Type I interferon regulates cytokine-delayed neutrophil apoptosis, reactive oxygen species production and chemokine expression. Clin. Exp. Immunol. 203, 151–159 (2021).
Ye, S., Lowther, S. & Stambas, J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J. Virol. 89, 2672–2683 (2015).
To, E. E. et al. Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid. Redox Signal. 32, 929–942 (2020).
Comments (0)