Targeting Inflammation in the Diagnosis, Management, and Prevention of Cardiovascular Diseases

World Health Organization. Noncommunicable diseases 2021 [Accessed September 2021]. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. 

Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017; 542(7640): 177–185. DOI: https://doi.org/10.1038/nature21363 

Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004; 43(10): 1731–1737. DOI: https://doi.org/10.1016/j.jacc.2003.12.047 

Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010; 34(3): J258–J265. DOI: https://doi.org/10.1016/j.jaut.2009.12.003 

Bays HE, Taub PR, Epstein E, et al. Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol. 2021; 5: 100149. DOI: https://doi.org/10.1016/j.ajpc.2021.100149 

Calle M, Andersen C. Assessment of dietary patterns represents a potential, yet variable, measure of inflammatory status: a review and update. Disease Markers. 2019; 2019: 1–13. DOI: https://doi.org/10.1155/2019/3102870 

Estruch R, Sacanella E, Lamuela-Raventós RM. Ideal dietary patterns and foods to prevent cardiovascular disease: beware of their anti-inflammatory potential. J Am Coll Cardiol. 2020; 76(19): 2194–2196. DOI: https://doi.org/10.1016/j.jacc.2020.09.575 

Li J, Lee DH, Hu J, et al. Dietary inflammatory potential and risk of cardiovascular disease among men and women in the U.S. J Am Coll Cardiol. 2020; 76(19): 2181–2193. DOI: https://doi.org/10.1016/j.jacc.2020.09.535 

Bäck M, Yurdagul A, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16(7): 389–406. DOI: https://doi.org/10.1038/s41569-019-0169-2 

Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009; 27: 165–197. DOI: https://doi.org/10.1146/annurev.immunol.021908.132620 

de Vries MR, Quax PH. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol. 2016; 27(5): 499–506. DOI: https://doi.org/10.1097/MOL.0000000000000339 

Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014; 16(9): 435. DOI: https://doi.org/10.1007/s11883-014-0435-z 

Amirfakhryan H. Vaccination against atherosclerosis: an overview. Hellenic J Cardiol. 2020; 61(2): 78–91. DOI: https://doi.org/10.1016/j.hjc.2019.07.003 

Ridker PM, MacFadyen JG, Thuren T, et al. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J. 2020; 41(23): 2153–2163. DOI: https://doi.org/10.1093/eurheartj/ehz542 

Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J M. 2017; 377(12): 1119–1131. DOI: https://doi.org/10.1056/NEJMoa1707914 

Kofler T, Kurmann R, Lehnick D, et al. Colchicine in patients with coronary artery disease: a systematic review and metaanalysis of randomized trials. J Am Heart Assoc. 2021; 10(16): e021198. DOI: https://doi.org/10.1161/JAHA.121.021198 

Alfaddagh A, Martin SS, Leucker TM, et al. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am J Prev Cardiol. 2020; 4: 100130. DOI: https://doi.org/10.1016/j.ajpc.2020.100130 

Libby P, Loscalzo J, Ridker PM, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018; 72: 2071–2081. DOI: https://doi.org/10.1016/j.jacc.2018.08.1043 

Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, et al. Heart inflammation: immune cell roles and roads to the heart. Am J Pathol. 2019; 189(8): 1482–1494. DOI: https://doi.org/10.1016/j.ajpath.2019.04.009 

Shioi T, Matsumori A, Kihara Y, et al. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res. 1997; 81(5): 664–671. DOI: https://doi.org/10.1161/01.RES.81.5.664 

Shang L, Yue W, Wang D, et al. Systolic overload-induced pulmonary inflammation, fibrosis, oxidative stress and heart failure progression through interleukin-1β. J Mol Cell Cardiol. 2020; 146: 84–94. DOI: https://doi.org/10.1016/j.yjmcc.2020.07.008 

Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 1998; 18(6): 894–901. DOI: https://doi.org/10.1161/01.ATV.18.6.894 

Matsumori A. Anti-inflammatory therapy for heart failure. Curr Opin Pharmacol. 2004; 4(2): 171–176. DOI: https://doi.org/10.1016/j.coph.2003.11.003 

Bajaj NS, Gupta K, Gharpure N, et al. Effect of immunomodulation on cardiac remodelling and outcomes in heart failure: a quantitative synthesis of the literature. ESC Heart Fail. 2020; 7(3): 1319–1330. DOI: https://doi.org/10.1002/ehf2.12681 

Fleet JC, Clinton SK, Salomon RN, et al. Atherogenic diets enhance endotoxin-stimulated interleukin-1 and tumor necrosis factor gene expression in rabbit aortae. J Nutr. 1992; 122(2): 294–305. DOI: https://doi.org/10.1093/jn/122.2.294 

Francis Stuart SD, De Jesus NM, Lindsey ML, et al. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016; 91: 114–122. DOI: https://doi.org/10.1016/j.yjmcc.2015.12.024 

Ono K, Matsumori A, Shioi T, et al. Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation. 1998; 98(2): 149–156. DOI: https://doi.org/10.1161/01.CIR.98.2.149 

Matsumori A. Cardiomyopathies and heart failure: biomolecular, infectious and immune mechanisms. In: Matsumori A (ed.), Cardiomyopathies and heart failure: Biomolecular, infectious and immune mechanisms. Developments in Cardiovascular Medicine 248. New York: Springer US; 2003. 1–16. DOI: https://doi.org/10.1007/978-1-4419-9264-2_1 

Haykal M, Matsumori A, Saleh A, et al. Diagnosis and treatment of HCV heart diseases. Expert Rev Cardiovasc Ther. 2021; 19(6): 493–499. DOI: https://doi.org/10.1080/14779072.2021.1917383 

Komiyama M, Hasegawa K, Matsumori A. Dilated cardiomyopathy risk in patients with coronavirus disease 2019: how to identify and characterise it early? Eur Cardiol. 2020; 15: e49. DOI: https://doi.org/10.15420/ecr.2020.17 

Saleh A, Matsumori A, Abdelrazek S, et al. Myocardial involvement in coronavirus disease 19. Herz. 2020; 45(8): 719–725. DOI: https://doi.org/10.1007/s00059-020-05001-2 

Matsumori A, Mason JW. The new FLC biomarker for a novel treatment of myocarditis, COVID-19 disease and other inflammatory disorders. Int Cardiovasc Forum J. In press. 

Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001; 291(5502): 319–322. DOI: https://doi.org/10.1126/science.291.5502.319 

Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003; 9(12): 1477–1483. DOI: https://doi.org/10.1038/nm955 

Aksoylar HI, Boussiotis VA. PD-1(+) T(reg) cells: a foe in cancer immunotherapy? Nat Immunol. 2020; 21(11): 1311–1312. DOI: https://doi.org/10.1038/s41590-020-0801-7 

Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020; 21(11): 1346–1358. DOI: https://doi.org/10.1038/s41590-020-0769-3 

Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J M. 2016; 375(18): 1749–1755. DOI: https://doi.org/10.1056/NEJMoa1609214 

Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021; 144(6): 471–484. DOI: https://doi.org/10.1056/NEJMoa1609214 

National Center for Immunization and Respiratory Diseases. Clinical considerations: myocarditis and pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults 2021. [Accessed September 2021]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html. 

Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J. 1994; 72(6): 561–566. DOI: https://doi.org/10.1136/hrt.72.6.561 

Hara M, Ono K, Hwang MW, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med. 2002; 195(3): 375–381. DOI: https://doi.org/10.1084/jem.20002036 

Kitaura-Inenaga K, Hara M, Higuchi K, et al. Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J. 2003; 67(10): 881–884. DOI: https://doi.org/10.1007/978-1-4939-8549-4_5 

Germolec DR, Shipkowski KA, Frawley RP, et al. Markers of inflammation. Methods Mol Biol. 2018; 1803: 57–79. DOI: https://doi.org/10.1007/978-1-4939-8549-4_5 

Spooner PM, Zipes DP. Sudden death predictors. Circulation. 2002; 105(22): 2574–2576. DOI: https://doi.org/10.1161/01.CIR.0000017821.98250.25 

Albert CM, Ma J, Rifai N, et al. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002; 105(22): 2595–2599. DOI: https://doi.org/10.1161/01.CIR.0000017493.03108.1C 

Bhatt DL, Topol EJ. Need to test the arterial inflammation hypothesis. Circulation. 2002; 106(1): 136–140. DOI: https://doi.org/10.1161/01.CIR.0000021112.29409.A2 

Sato Y, Takatsu Y, Kataoka K, et al. Serial circulating concentrations of C-reactive protein, interleukin (Il)-4, and Il-6 in patients with acute left heart decompensation. Clin Cardiol. 1999; 22(12): 811–813. DOI: https://doi.org/10.1002/clc.4960221211 

Hampson J, Turner ARS. Polyclonal free light chains: promising new biomarkers in inflammatory disease. Curr Biomark Find. 2014; 4: 139–149. DOI: https://doi.org/10.2147/CBF.S57681 

Dispenzieri A, Katzmann JA, Kyle RA, et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin Proc. 2012; 87(6): 517–523. DOI: https://doi.org/10.1016/j.mayocp.2012.03.009 

Gulli F, Napodano C, Marino M, et al. Serum immunoglobulin free light chain levels in systemic autoimmune rheumatic diseases. Clin Exp Immunol. 2020; 199(2): 163–171. DOI: https://doi.org/10.1111/cei.13385 

Terrier B, Sène D, Saadoun D, et al. Serum-free light chain assessment in hepatitis C virus-related lymphoproliferative disorders. Ann Rheum Dis. 2009; 68(1): 89–93. DOI: https://doi.org/10.1136/ard.2007.086488 

Basile U, Gragnani L, Piluso A, et al. Assessment of free light chains in HCV-positive patients with mixed cryoglobulinaemia vasculitis undergoing rituximab treatment. Liver Int. 2015; 35(9): 2100–2107. DOI: https://doi.org/10.1111/liv.12829 

Matsumori A, Shimada M, Jie X, et al. Effects of free immunoglobulin light chains on viral myocarditis. Circ Res. 2010; 106(9): 1533–1540. DOI: https://doi.org/10.1161/CIRCRESAHA.110.218438 

Matsumori A, Shimada T, Nakatani E, et al. Immunoglobulin free light chains as an inflammatory biomarker of heart failure with myocarditis. Clin Immunol. 2020; 217: 108455. DOI: https://doi.org/10.1016/j.clim.2020.108455 

Matsumori A, Shimada T, Shimada M, et al. Immunoglobulin free light chains as inflammatory biomarkers of atrial fibrillation. Circ Arrhythm Electrophysiol. 2020; 13(11): e009017. DOI: https://doi.org/10.1161/CIRCEP.120.009017 

Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014; 13(6): 465–476. DOI: https://doi.org/10.1038/nrd4275 

Matsumori A, Shimada T, Shimada M, et al. Immunoglobulin free light chains: an inflammatory biomarker of diabetes. Inflamm Res. 2020; 69(8): 715–718. DOI: https://doi.org/10.1007/s00011-020-01357-7 

Hemler EC, Hu FB. Plant-based diets for personal, population, and planetary health. Adv Nutr. 2019; 10(Suppl_4): S275–S283. DOI: https://doi.org/10.1007/s00011-020-01357-7 

U.S. News & World Report. Best diets overall. U.S. New & World Report Rankings 2021 [Accessed September 2021]. https://health.usnews.com/best-diet/best-diets-overall. 

Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009; 54(23): 2129–2138. DOI: https://doi.org/10.1016/j.jacc.2009.09.009 

Cofán M, Rajaram S, Sala-Vila A, et al. Effects of 2-year walnut-supplemented diet on inflammatory biomarkers. J Am Coll Cardiol. 2020; 76(19): 2282–2284. DOI: https://doi.org/10.1016/j.jacc.2020.07.071 

Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: a review. Crit Rev Food Sci Nutr. 2018; 58(8): 1260–1270. DOI: https://doi.org/10.1080/10408398.2016.1251390 

Wu D, Lewis ED, Pae M, et al. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2018; 9: 3160. DOI: https://doi.org/10.3389/fimmu.2018.03160 

Fraga CG, Croft KD, Kennedy DO, et al. The effects of polyphenols and other bioactives on human health. Food Funct. 2019; 10(2): 514–528. DOI: https://doi.org/10.1039/C8FO01997E 

Espín JC, García-Conesa MT, Tomás-Barberán FA. Nutraceuticals: facts and fiction. Phytochem. 2007; 68(22–24): 2986–3008. DOI: https://doi.org/10.1016/j.phytochem.2007.09.014 

Cunningham E. What has happened to the ORAC database? J Acad Nutr Diet. 2013; 113(5): 740. DOI: https://doi.org/10.1016/j.jand.2013.03.007 

Rohdewald PJ. Update on the clinical pharmacology of Pycnogenol®. Med Res Arch. 2015; 2015–07–11(3). DOI: https://doi.org/10.18103/mra.v0i3.183 

Maimoona A, Naeem I, Saddiqe Z, et al. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J Ethnopharmacol. 2011; 133(2): 261–277. DOI: https://doi.org/10.1016/j.jep.2010.10.041 

Uhlenhut K, Högger P. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol). Free Radic Biol Med. 2012; 53(2): 305–313. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.04.013 

Matsumori A, Higuchi H, Shimada M. French maritime pine bark extract inhibits viral replication and prevents development of viral myocarditis. J Card Fail. 2007; 13(9): 785–791. DOI: https://doi.org/10.1016/j.cardfail.2007.06.721 

Ezzikouri S, Nishimura T, Kohara M, et al. Inhibitory effects of Pycnogenol® on hepatitis C virus replication. Antiviral Res. 2015; 113: 93–102. DOI: https://doi.org/10.1016/j.antiviral.2014.10.017 

Matsumori A. Viral myocarditis from animal model to human diseases. In: Berhardt LV (ed.) Advances in medicine and biology. Hauppauge, NY: Nova Science Publishers. 2022; 194: 41–74. 

Matsumori A. Cardiovascular diseases as major extrsahepatic manifestations of hepatitis C virus infection: leukocytes, not hepatocytes, are the targets of hepatitis C virus infection. Interv Cardiol. 2022; 14(2): 477–485. DOI: https://doi.org/10.37532/1755-.5310.2022.14(2).472 

Comments (0)

No login
gif