Construction strategies and the development trend of antibacterial surfaces

Antiadhesion strategiesConstruction of hydrophilic surfacesIncrease hydrophilicity and form a hydration layer on the surfaces as a “barrier”PEG-based and zwitterionic polymers13–2113. Z. Zhang, J. Wang, Q. Tu, N. Nie, J. Sha, W. Liu, R. Liu, Y. Zhang, and J. Wang, Colloids Surf. B 88, 85 (2011). https://doi.org/10.1016/j.colsurfb.2011.06.01914. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. B. Lee, H. Suh, and K. S. Choi, Biomaterials 19, 851 (1998). https://doi.org/10.1016/S0142-9612(97)00245-715. S. Zheng, Q. Yang, and B. Mi, Appl. Surf. Sci. 363, 619 (2016). https://doi.org/10.1016/j.apsusc.2015.12.08116. L. Mi and S. Jiang, Angew. Chem. Int. Ed. 53, 1746 (2014). https://doi.org/10.1002/anie.20130406017. S. Chen, J. Zheng, L. Li, and S. Jiang, J. Am. Chem. Soc. 127, 14473 (2005). https://doi.org/10.1021/ja054169u18. A. Roosjen, H. C. van der Mei, H. J. Busscher, and W. Norde, Langmuir 20, 10949 (2004). https://doi.org/10.1021/la048469l19. S. Lowe, N. M. O'Brien-Simpson, and L. A. Connal, Polym. Chem. 6, 198 (2015). https://doi.org/10.1039/C4PY01356E20. J. B. Schlenoff, Langmuir 30, 9625 (2014). https://doi.org/10.1021/la500057j21. R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, and Z. Jiang, Chem. Soc. Rev. 45, 5888 (2016). https://doi.org/10.1039/C5CS00579EPrevention of the initial microorganisms’ adsorption on the surface; extensive applicability and universalityIncapable of killing the attached bacteria and ineffective in preventing bacterial colonization; prone to losing the antibacterial properties during the long-term antibacterial processConstruction of low-energy surfacesReduce the adhesive force and remove microorganisms on the surfaces via shear force of the water flowMolecules containing a siloxane chain or a fluorine-based alkyl chain; bionic surface based on the lotus effect22–2422. H. Kawakami, M. Kanno, S. Nagaoka, and S. Kubota, J. Biomed. Mater. Res. Part A 67A, 1393 (2003). https://doi.org/10.1002/jbm.a.2005223. D. Churchley, G. D. Rees, E. Barbu, T. G. Nevell, and J. Tsibouklis, Int. J. Pharm. 352, 44 (2008). https://doi.org/10.1016/j.ijpharm.2007.10.02424. J. Gao, D. Yan, H. Ni, L. Wang, Y. Yang, and X. Wang, J. Colloid Interface Sci. 393, 361 (2013). https://doi.org/10.1016/j.jcis.2012.10.034Regulation of surface chargesIncorporate negative charges and maximize the electrostatic repulsion between surfaces and microorganismsNegative charged molecules2525. X. Wang, L. Liu, X. Zhou, Y. Huo, J. Gao, and H. Gu, BMC Oral Health 20, 169 (2020). https://doi.org/10.1186/s12903-020-01158-8Active antibacteria strategiesSurfaces modified with a natural antibacterial agentDirect contact antibacterial mechanismAntibacterial peptides, enzymes, and chitosan26–3626. Y. Bao, H. Zhang, X. Huang, J. Ma, C. M. Logue, L. K. Nolan, and G. Li, Virulence 9, 666 (2018). https://doi.org/10.1080/21505594.2018.143397927. P. G. Ferreira, V. F. Ferreira, F. C. da Silva, C. S. Freitas, P. R. Pereira, and V. M. F. Paschoalin, Pharmaceutics 14, 1307 (2022). https://doi.org/10.3390/pharmaceutics1406130728. Y. Xing, Q. Xu, X. Li, C. Chen, L. Ma, S. Li, Z. Che, and H. Lin, Int. J. Polym. Sci. 2016, 1. https://doi.org/10.1155/2016/485173029. M. Ganan, A. V. Carrascosa, and A. J. Martínez-Rodríguez, J. Food Protect. 72, 1735 (2009). https://doi.org/10.4315/0362-028X-72.8.173530. F. Khan, D. T. N. Pham, S. F. Oloketuyi, P. Manivasagan, J. Oh, and Y.-M. Kim, Colloids Surf. B 185, 110627 (2020). https://doi.org/10.1016/j.colsurfb.2019.11062731. S. Gera, E. Kankuri, and K. Kogermann, Pharmacol. Ther. 232, 107990 (2022). https://doi.org/10.1016/j.pharmthera.2021.10799032. M. E. Schafer, H. Browne, J. B. Goldberg, and D. E. Greenberg, Acc. Chem. Res. 54, 2377 (2021). https://doi.org/10.1021/acs.accounts.1c0004033. Y. Liu, S. Ding, J. Shen, and K. Zhu, Nat. Prod. Rep. 36, 573 (2019). https://doi.org/10.1039/C8NP00031J34. M. Jarva, F. T. Lay, T. K. Phan, C. Humble, I. K. H. Poon, M. R. Bleackley, M. A. Anderson, M. D. Hulett, and M. Kvansakul, Nat. Commun. 9, 1962 (2018). https://doi.org/10.1038/s41467-018-04434-y35. R. Mani, S. D. Cady, M. Tang, A. J. Waring, R. I. Lehrer, and M. Hong, Proc. Natl. Acad. Sci. U.S.A. 103, 16242 (2006). https://doi.org/10.1073/pnas.060507910336. M. A. Islam, A. Karim, B. Ethiraj, T. Raihan, and A. Kadier, Biotechnol. Adv. 55, 107901 (2022). https://doi.org/10.1016/j.biotechadv.2021.107901Broad-spectrum antibacterial properties; capable of killing the contacted bacteria and microorganismReleased agents with an uncontrolled rate may lead to the risk to the environment and humans; the adhered dead bacteria reduce the antibacterial properties during the long-term antibacterial processSurfaces modified with cationic polymersDestabilize and disrupt the cell membrane via electrostatic interactionsPolymers containing quaternary ammonium or guanidinium groups37–4037. P. Elena and K. Miri, Colloids Surf. B 169, 195 (2018). https://doi.org/10.1016/j.colsurfb.2018.04.06538. Z. Dong, Y. Wang, C. Wang, H. Meng, Y. Li, and C. Wang, Adv. Healthc. Mater. 9, 2000419 (2020). https://doi.org/10.1002/adhm.20200041939. Y. Xue, H. Xiao, and Y. Zhang, Int. J. Mol. Sci. 16, 3626 (2015). https://doi.org/10.3390/ijms1602362640. C. A. Hae Cho et al., Biomacromolecules 19, 1389 (2018). https://doi.org/10.1021/acs.biomac.7b01245Surfaces modified with nanomaterialsRelease or contact the antibacterial mechanism depending on the nanomaterials usedIntroduction of the nanomaterials Ag NPs, Cu NPs, TiO2 NPs41–4841. I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, and C. H. Chu, Int. J. Nanomed. 15, 2555 (2020). https://doi.org/10.2147/IJN.S24676442. Z. Shu, Y. Zhang, Q. Yang, and H. Yang, Nanoscale Res. Lett. 12, 135 (2017). https://doi.org/10.1186/s11671-017-1859-543. P. Gunawan et al., ACS Nano 5, 10033 (2011). https://doi.org/10.1021/nn203872544. Z. Liu and Y. Hu, ACS Appl. Mater. Interfaces 8, 21666 (2016). https://doi.org/10.1021/acsami.6b0672745. Z. Liu, Y. Hu, C. Liu, and Z. Zhou, Chem. Commun. 52, 12245 (2016). https://doi.org/10.1039/C6CC06015C46. H. M. Yadav, J.-S. Kim, and S. H. Pawar, Korean J. Chem. Eng. 33, 1989 (2016). https://doi.org/10.1007/s11814-016-0118-247. K. Su et al., ACS Nano 14, 2077 (2020). https://doi.org/10.1021/acsnano.9b0868648. C. Ge et al., Sci. Total Environ. 838, 156401 (2022). https://doi.org/10.1016/j.scitotenv.2022.156401Combination antibacterial strategiesCombination of antiadhesion and sterilizationSynergistic effects: the irreversible adsorption inhibition of bacteria and microorganisms by hydrophilic segment; bacteria and microorganisms release promotion by low surface energy segment or killing the attached microorganism by biocidal segmentMulticomponent polymers or nanomaterials49–5349. G. Ye, J. Lee, F. Perreault, and M. Elimelech, ACS Appl. Mater. Interfaces 7, 23069 (2015). https://doi.org/10.1021/acsami.5b0664750. H.-X. Wu, L. Tan, Z.-W. Tang, M.-Y. Yang, J.-Y. Xiao, C.-J. Liu, and R.-X. Zhuo, ACS Appl. Mater. Interfaces 7, 7008 (2015). https://doi.org/10.1021/acsami.5b0121051. T. Wei, W. Zhan, Q. Yu, and H. Chen, ACS Appl. Mater. Interfaces 9, 25767 (2017). https://doi.org/10.1021/acsami.7b0648352. G. Cheng, H. Xue, Z. Zhang, S. Chen, and S. Jiang, Angew. Chem. Int. Ed. 47, 8831 (2008). https://doi.org/10.1002/anie.20080357053. H. Zhang, Y. Li, S. Tian, X. Qi, J. Yang, Q. Li, C. Lin, J. Zhang, and L. Zhang, Chem. Eng. J. 436, 135072 (2022). https://doi.org/10.1016/j.cej.2022.135072Multifunctional antibacterial surfaces with antiadhesion property and actively killed performanceThe synthesis of multicomponent polymers or nanomaterials is difficult, and the modification process is relatively complicated

Comments (0)

No login
gif