Fundamentals of froth flotation

Gebrüder Bessel (1877) Verfahren zur Reinigung von Graphit. German patent 42, class 22

Fuerstenau MC, Jameson G, Yoon RH (eds) (2007) Froth flotation, a century of innovation. Society for Mining Metallurgy and Exploration Inc (SME), Littleton

Google Scholar 

Fuerstenau DW (2007) A century of developments in the chemistry of flotation processing. In: Fuerstenau MC, Jameson G, Yoon RH (eds) Froth flotation, a century of innovation. Society for Mining Metallurgy and Exploration Inc (SME), Littleton, pp 3–64

Google Scholar 

Gaudin AM, Miaw HL, Spedden HR (1957) Native floatability and crystal structure. In: Schulman JH (ed) Proceedings of the second international congress of surface activity, vol III—electrical phenomena at solid/liquid interface. Butterworths Scientific Publications, London, pp 202–219

Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

Google Scholar 

Dupré A (1869) Theorie mechanique de la chaleur. Gauthier-Villars, Paris

Google Scholar 

Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52

CAS  Google Scholar 

Laskowski JS, Kitchener JA (1969) The hydrophilic–hydrophobic transition on silica. J Colloid Interface Sci 29:670–679

CAS  Google Scholar 

Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

Google Scholar 

Bailey R, Gray VR (1958) Contact angle measurements of water on coal. J Appl Chem 8:197–202

CAS  Google Scholar 

Clark WC, Mason G (1968) Oil on wet coal—measurements of contact angle by a suction method. J Appl Chem 18:240–242

Google Scholar 

Williams MC, Fuerstenau DW (1987) A simple flotation method for rapidly assessing the hydrophobicity of coal. Int J Miner Process 20:153–157

CAS  Google Scholar 

Laskowski JS (2001) Coal flotation and fine coal utilization. Elsevier, Amsterdam

Google Scholar 

Kitchener JA (1969) Colloidal minerals: chemical aspects of their dispersion, flocculation, and filtration. Filtr Sep 6:553–560

Scholz F, Kahlert H, Thede R (2020) The partition of salts (i) between two immiscible solution phases and (ii) between the solid salt phase and its saturated salt solution. ChemTexts 6:17

CAS  Google Scholar 

Kosmulski M (2021) The pH-dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 296:102519 (and earlier parts I–VIII)

CAS  PubMed  Google Scholar 

Stern O (1924) Zur theorie der elektrolytischen doppelschicht. Z Elektrochem Angew Phys Chem 30:508–516 (German text)

CAS  Google Scholar 

Leja J (1982) Surface chemistry of froth flotation. Plenum, New York

Google Scholar 

Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press, New York (reprinted 2002)

Google Scholar 

Reis MC (2021) Ion activity models: the Debye–Hückel equation and its extensions. ChemTexts 7:9

Google Scholar 

Hunter RJ (1981) Zeta potential in colloid science—principles and applications. Academic Press, London

Google Scholar 

Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210 (German text)

Google Scholar 

Henry MA (1931) The cataphoresis of suspended particles, part I—the equation of cataphoresis. Proc R Soc A 133:106–129

CAS  Google Scholar 

Smoluchowski M (1903) Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull Int Acad Sci Crac, pp 182–199, French text

Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

CAS  Google Scholar 

Wiese GR, Healy TW (1975) Coagulation and electrokinetic behavior of TiO2 and Al2O3 colloidal dispersions. J Colloid Interface Sci 51:427–433

CAS  Google Scholar 

James RO, Healy TW (1972) Adsorption of hydrolyzable metal ions at the oxide-water interface, II, charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems. J Colloid Interface Sci 40:53–64

CAS  Google Scholar 

James RO, Healy TW (1972) Adsorption of hydrolyzable metal ions at the oxide-water interface, I, Co(II) adsorption on SiO2 and TiO2 as model systems. J Colloid Interface Sci 40:42–52

CAS  Google Scholar 

Glembotskii VA, Klassen VI, Plaksin IN (1963) Flotation. Primary Sources, New York

Google Scholar 

Bulatovic SM (2007) Handbook of flotation reagents: chemistry, theory, and practice, vol I. Elsevier, Amsterdam (vol II—2010, vol III—2015)

Google Scholar 

Smith RW, Akhtar S (1976) Cationic flotation of oxides and silicates. In: Fuerstenau MC (ed) Flotation—AM Gaudin memorial volume, vol 1. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc., New York, pp 87–116

Fuerstenau DW (1957) Correlation of contact angles, adsorption density, zeta potentials, and flotation rate. Trans AIME 208:1365–1367

Google Scholar 

Laskowski JS, Vurdela RM, Liu Q (1988) The colloid chemistry of weak electrolyte collectors. In: Forssberg KSE (ed) Proceedings of the XVI international mineral processing congress. Elsevier Science Publishers BV, Amsterdam, pp 703–715

Laskowski JS (1997) Weak electrolyte collectors. In: Parekh BK, Miller JD (eds) Advances in flotation technology. Society for Mining, Metallurgy and Exploration (SME), Littleton, pp 59–82

Google Scholar 

Fuerstenau DW, Healy TW, Somasundaran P (1964) The role of the hydrocarbon chain of alkyl collectors in flotation. Trans AIME 229:321–325

CAS  Google Scholar 

Modi HJ, Fuerstenau DW (1960) Flotation of corundum, an electrochemical interpretation. Trans AIME 217:381–387

CAS  Google Scholar 

Iwasaki I, Cooke RSB, Colombo AF (1960) Flotation characteristics of goethite. US Department of the Interior, Bureau of Mines, report of investigations 5593

Coelho EM (1972) Flotation of oxidized copper minerals. Ph.D. thesis, University of British Columbia, Vancouver, Canada

Fuerstenau MC, Gutierrez G, Elgillani DA (1968) The influence of sodium silicate in nonmetallic flotation systems. Trans AIME 241:319–323

CAS  Google Scholar 

Peck AS (1963) Infrared studies of oleic acid and sodium oleate adsorption on fluorite, barite, and calcite. US Department of the Interior, Bureau of Mines, Report of Investigations 6202

Peck AS, Wadsworth ME (1963) Infrared study of the effect of fluoride, sulfate, and chloride ions on adsorption of oleate on fluorite and barite. US Department of the Interior, Bureau of Mines, Report of Investigations 6412

Hu JS, Misra M, Miller JD (1986) Effect of temperature and oxygen on oleate adsorption by fluorite. Int J Miner Process 18:57–72

CAS  Google Scholar 

Nanthakumar B, Grimm D, Pawlik M (2009) Anionic flotation of high-iron phosphate ores—control of process water chemistry and depression of iron minerals by starch and guar gum. Int J Miner Process 92:49–87

CAS  Google Scholar 

Ananthapadmanabhan KP, Somasundaran P (1985) Surface precipitation of inorganics and surfactants and its role in adsorption and flotation. Colloids Surf 13:151–167

CAS  Google Scholar 

Fuerstenau MC, Han KN (2002) Metal-surfactant precipitation and adsorption in froth flotation. J Colloid Interface Sci 256:175–182

CAS  Google Scholar 

Doi S, Shibata J, Sano M, Nishimura S (1986) Chemical properties of flotation reagents and their application to flotation phenomena. Technol Rep Kansai Univ 28:105–114

CAS  Google Scholar 

Iwasaki I, Cooke SRB (1958) The decomposition of xanthate in acid solution. J Am Chem Soc 80:285–288

CAS  Google Scholar 

Iwasaki I, Cooke SRB (1959) Dissociation constant of xanthic acid as determined by spectrophotometric method. J Phys Chem 63:1321–1322

CAS  Google Scholar 

Tipman RN (1970) The reactions of potassium ethyl xanthate in aqueous solution. Ph.D. thesis, University of British Columbia, Vancouver, Canada

Finkelstein NP (1967) Kinetic and thermodynamic aspects of the interaction between potassium ethyl xanthate and oxygen in aqueous solution. Trans IMM 76:C51–C59

CAS  Google Scholar 

Healy TW, Moignard MS (1976) A review of electrokinetic studies of metal sulfides. In: Fuerstenau MC (ed) Flotation—AM Gaudin memorial volume, vol 1. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York, pp 275–297

Woods R (1976) Electrochemistry of sulfide flotation. In: Fuerstenau MC (ed) Flotation—AM Gaudin memorial volume, vol 1. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York, pp 298–333

Woods R (1988) Flotation of sulfide minerals. In: Somasundaran P, Moudgil BM (eds) Reagents in mineral technology. Marcel Dekker, New York, pp 39–78

Google Scholar 

Poling GW (1976) Reactions between thiol reagents and sulphide minerals. In: Fuerstenau MC (ed) Flotation—AM Gaudin memorial volume, vol 1. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York, pp 334–363

Leja J, Little LH, Poling GW (1963) Xanthate adsorption studies using infrared spectroscopy part I and II. Trans IMM 72:407–423

Google Scholar 

Blume A (2018) Lipids at the air-water interface. ChemTexts 4:3

Google Scholar 

Rubinstein JB (1995) Column flotation processes, designs, and practices. Gordon and Breach Science, Basel

Google Scholar 

Cho YS, Laskowski JS (2002) Effect of flotation frothers on bubble size and foam stability. Int J Miner Process 64:69–80

CAS  Google Scholar 

Cho YS, Laskowski JS (2002) Bubble coalescence and its effect on dynamic foam stability. Can J Chem Eng 80:299–305

CAS  Google Scholar 

Finch JA, Nesset JE, Acuna C (2008) Role of frother on bubble production and behavior in flotation. Miner Eng 21:949–957

CAS  Google Scholar 

Levich VG (1962) Physicochemical hydrodynamics, 2nd edn. Prentice-Hall, Englewood Cliffs

Google Scholar 

Małysa K (1992) Wet foams, formation properties and mechanism of stability. Adv Colloid Interface Sci 40:37–83

Google Scholar 

Pugh RJ (1996) Foaming, foam films, antifoaming and defoaming. Adv Colloid Interface Sci 64:67–142

CAS  Google Scholar 

Małysa K, Lunkenheimer K (2008) Foams under dynamic conditions. Curr Opin Colloid Interface Sci 13:150–162

Google Scholar 

Czarnecki J, Małysa K, Pomianowski A (1982) Dynamic frothability index. J Colloid Interface Sci 86:570–572

CAS  Google Scholar 

Sweet C, van Hoogstraten J, Harris M, Laskowski JS (1997) The effect of frothers on bubble size and frothability of aqueous solutions. In: Finch JA, Rao SR, Holubec I (eds) Processing of complex ores—mineral processing and the environment. Proceedings of the 2nd UBC-McGill biannual international symposium on fundamentals of mineral processing and the environment. Canadian Institute of Mining Metallurgy and Petroleum (CIM), Montreal, pp 235–245

Laskowski JS, Tlhone T, Williams P, Ding K (2003) Fundamental properties of the polyoxypropylene alkyl ether flotation frothers. Int J Miner Process 72:289–299

CAS  Google Scholar 

Newcombe B, Bradshaw D, Wightman E (2012) Flash flotation…and the plight of the coarse particle. Miner Eng 34:1–10

CAS  Google Scholar 

Kohmuench JN, Mankosa MJ, Thanasekaran H, Hobert A (2018) Improving coarse particle flotation using the HydroFloat™ (raising the trunk of the elephant curve). Miner Eng 121:137–145

CAS  Google Scholar 

Kakovskii IA (1952) Toward a theory of the action of cyanides during flotation. In: Proceedings of second scientific-technical session of Mekhanobr, Leningrad, Russian text. Relevant data also discussed in reference [29]

Miller JD, Yalamanchili MR, Kellar JJ (1992) Surface charge of alkali halide particles as determined by laser-Doppler electrophoresis. Langmuir 8:1464–1469

CAS  Google Scholar 

Hancer M, Celik MS, Miller JD (2001) The significance of interfacial water structure in soluble salt flotation systems. J Colloid Interface Sci 235:150–161

CAS  PubMed  Google Scholar 

Klein B, Bamber A (2019) Mineral sorting. In: Dunne RC (manag ed), Kawatra SK, Young CA (eds) SME mineral processing and extractive metallurgy handbook. Society for Mining, Metallurgy and Exploration (SME), Englewood, pp 763–786

留言 (0)

沒有登入
gif