The Recognition of Shock in Pediatric Trauma Patients

Deaths: leading causes for 2019. National Vital Statistics Report.

Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3-11.

PubMed  Google Scholar 

Carcillo J, Han K, Lin J, Orr R. Goal-directed management of pediatric shock in the emergency department. Clin Ped Emerg Med. 2007;8:165–75.

Article  Google Scholar 

Smith LAA, Carcillo JA, Aneja R. Shock States. In: Zimmerman JJCR, Fuhrman BP, Rotta AT, Kudchadkar SR, Relvas M, Tobias JD, editors. Furhrman and Zimmerman’s Pediatric critical care. 6th ed. Philadelphia: Elsevier; 2022. p. 352- 362.e355.

Google Scholar 

Carcillo JA, Kuch BA, Han YY, et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics. 2009;124(2):500–8.

Article  Google Scholar 

Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112(4):793–9.

Article  Google Scholar 

Kissoon N, Orr RA, Carcillo JA. Updated American College of Critical Care Medicine–pediatric advanced life support guidelines for management of pediatric and neonatal septic shock: relevance to the emergency care clinician. Pediatr Emerg Care. 2010;26(11):867–9.

Article  Google Scholar 

•• Leeper CM, McKenna C, Gaines BA. Too little too late: hypotension and blood transfusion in the trauma bay are independent predictors of death in injured children. J Trauma Acute Care Surg. 2018;85(4):674–8. This paper highlights differences in pediatric trauma patients, specifically that hypotension and blood transfusion in the trauma bay in these patients indicate late findings in pediatric shock and are poor prognostic indicators.

Article  Google Scholar 

Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011;77(10):986–92.

CAS  PubMed  Google Scholar 

Bruijns SR, Guly HR, Bouamra O, et al. The value of traditional vital signs, shock index, and age-based markers in predicting trauma mortality. J Trauma Acute Care Surg. 2013;74:1432–7.

Article  Google Scholar 

• Acker SN, Ross JT, Partrick DA, et al. Pediatric specific shock index accurately identifies severely injured children. J Pediatr Surg. 2015;50:331–4. This data indicates that age-adjusted shock index is more accurate at identifying children who are severely injured, have intraabdominal injury requiring transfusion, and at higher risk of death than shock index unadjusted for age.

Article  Google Scholar 

Linnaus ME, Notrica DM, Langlais CS, et al. Prospective validation of the shock index pediatric-adjusted (SIPA) in blunt liver and spleen trauma: an ATOMAC+ study. J Pediatr Surg. 2017;52(2):340–4.

Article  Google Scholar 

Nordin A, Coleman A, Shi J, et al. Validation of the age-adjusted shock index using pediatric trauma quality improvement program data. J Pediatr Surg. 2018;53(1):130–5.

Article  Google Scholar 

Nordin A, Shi J, Wheeler K, et al. Age-adjusted shock index: from injury to arrival. J Pediatr Surg. 2019;54:984–8.

Article  Google Scholar 

Acker SN, Bredbeck B, Partrick DA, Kulungowski AM, Barnett CC, Bensard D. Shock index, pediatric age-adjusted (SIPA) is more accurate than age-adjusted hypotension for trauma team activation. Surgery. 2016;161(3):803–7.

Article  Google Scholar 

Phillips R, Acker S, Shahi N, et al. The shock index, pediatric age-adjusted (SIPA) enhanced: prehospital and emergency department SIPA values forecast transfusion needs for blunt solid organ injured children. Surgery. 2020;168:690–4.

Article  Google Scholar 

Phillips R, Meier M, Shahi N, et al. Elevated pediatric age-adjusted shock-index (SIPA) in blunt solid organ injuries. J Pediatr Surg. 2021;56:401–4.

Article  Google Scholar 

American Heart Association. “Pediatric advanced life support.” https://eccguidelines.heart.org/index.php/circulation/cpr-ecc-guidelines-2/part-12-pediatric-advanced-life-support/. Accessed 6 July 2022.

Vandewalle RJ, Peceny JK, Dolejs SC, et al. Trends in pediatric adjusted shock index predict morbidity and mortality in children with severe blunt injuries. J Pediatr Surg. 2018;53(2):362–6.

Article  Google Scholar 

Stevens J, Reppucci ML, Meier M, Phillips R, Shahi N, Shirek G, et al. Pre-hospital and emergency department shock index pediatric age-adjusted (SIPA) “cut points” to identify pediatric trauma patients at risk for massive transfusion and/or mortality. J Pediatr Surg. 2022;57(2):302–7. https://doi.org/10.1016/j.jpedsurg.2021.09.053.

Article  PubMed  Google Scholar 

Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136(10):1118–23.

CAS  Article  Google Scholar 

Chesnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien). 1993;59:121–5.

CAS  Google Scholar 

Chuang JF, et al. Use of the reverse shock index for identifying high-risk patients in a five-level triage system. Scand J Trauma Resusc Emerg Med. 2016;24:12.

Article  Google Scholar 

Kuo SCH, et al. The use of the reverse shock index to identify high-risk trauma patients in addition to the criteria for trauma team activation: a cross-sectional study based on a trauma registry system. BMJ Open. 2016;6:e011072.

Article  Google Scholar 

Lai WH, et al. Using the reverse shock index at the injury scene and in the emergency department to identify high-risk patients: a cross-sectional retrospective study. Int J Environ Res Public Health. 2016;13:357.

Article  Google Scholar 

Lai WH, et al. Systolic blood pressure lower than heart rate upon arrival at and departure from the emergency department indicates a poor outcome for adult trauma patients. Int J Environ Res Public Health. 2016;13:528.

Article  Google Scholar 

Reppucci ML, Acker SN, Cooper E, Meier M, Stevens J, Phillips R, Moulton S, Bensard D. Improved identification of severely injured pediatric trauma patients using reverse shock index multiplied by Glasgow Coma Scale (rSIG). J Trauma Acute Care Surg. https://doi.org/10.1097/TA.0000000000003432.

Filipescu R, Powers C, Yu H, Yu J, Rothstein DH, Harmon CM, Clemency B, Guo WA, Bass KD. Improving the performance of the Revised Trauma Score using Shock Index, Peripheral Oxygen Saturation, and Temperature-a National Trauma Database study 2011 to 2015. Surgery. 2020;167(5):821–8. https://doi.org/10.1016/j.surg.2019.12.003.

Article  PubMed  Google Scholar 

Reppucci ML, Phillips R, Meier M, Acker SN, Stevens J, Moulton SL, Bensard D. Pediatric age-adjusted shock index as a tool for predicting outcomes in children with or without traumatic brain injury. J Trauma Acute Care Surg. 2021;91(5):856–60. https://doi.org/10.1097/TA.0000000000003208.

Article  PubMed  Google Scholar 

Raythatha JH, Aulakh H, Yang S, Mok C, Soundappan SV. Predicting morbidity and mortality in Australian paediatric trauma with the Paediatric Age-Adjusted Shock Index and Glasgow Coma Scale. Injury. 2022;53(4):1438–42. https://doi.org/10.1016/j.injury.2022.01.034.

Article  PubMed  Google Scholar 

Convertino VA, Moulton SL, Grudic GZ, Rickards CA, Hinojosa-Laborde C, Gerhardt RT, Blackbourne LH, Ryan KL. Use of advanced machine-learning techniques for noninvasive monitoring of hemorrhage. J Trauma. 2011;71(1 Suppl):S25-32. https://doi.org/10.1097/TA.0b013e3182211601.

Article  PubMed  Google Scholar 

Moulton SL, Mulligan J, Grudic GZ, Convertino VA. Running on empty? The compensatory reserve index. J Trauma Acute Care Surg. 2013;75(6):1053–9. https://doi.org/10.1097/TA.0b013e3182aa811a.

Article  PubMed  Google Scholar 

Stewart CL, Mulligan J, Grudic GZ, Talley ME, Jurkovich GJ, Moulton SL. The Compensatory Reserve Index Following Injury: results of a prospective clinical trial. Shock. 2016;46(3 Suppl 1):61–7. https://doi.org/10.1097/SHK.0000000000000647.

Article  PubMed  Google Scholar 

Nadler R, Convertino VA, Gendler S, Lending G, Lipsky AM, Cardin S, Lowenthal A, Glassberg E. The value of noninvasive measurement of the compensatory reserve index in monitoring and triage of patients experiencing minimal blood loss. Shock. 2014;42(2):93–8. https://doi.org/10.1097/SHK.0000000000000178.

Article  PubMed  Google Scholar 

• Johnson MC, Alarhayem A, Convertino V, Carter R 3rd, Chung K, Stewart R, Myers J, Dent D, Liao L, Cestero R, Nicholson S, Muir M, Schwaca M, Wampler D, DeRosa M, Eastridge BJ. Comparison of compensatory reserve and arterial lactate as markers of shock and resuscitation. J Trauma Acute Care Surg. 2017;83(4):603–8. https://doi.org/10.1097/TA.0000000000001595. This is a prospective observational study that highlights the comparative ability of the compensatory reserve index to lacate in identifying initial perfusion status among hemorrhaging patients.

Article  PubMed  Google Scholar 

Choi YM, Leopold D, Campbell K, Mulligan J, Grudic GZ, Moulton SL. Noninvasive monitoring of physiologic compromise in acute appendicitis: new insight into an old disease. J Pediatr Surg. 2018;53(2):241–6. https://doi.org/10.1016/j.jpedsurg.2017.11.013.

Article  PubMed  Google Scholar 

Ehrmann DE, Leopold DK, Phillips R, Shahi N, Campbell K, Ross M, Zablah JE, Moulton SL, Morgan G, Kim JS. The Compensatory Reserve Index responds to acute hemodynamic changes in patients with congenital heart disease: a proof of concept study. Pediatr Cardiol. 2020;41(6):1190–8. https://doi.org/10.1007/s00246-020-02374-3.

Article  PubMed  Google Scholar 

Leopold DK, Phillips RC, Shahi N, Gien J, Marwan AI, Kinsella JP, Mulligan J, Liechty KW, Moulton SL. Low postnatal CRI values are associated with the need for ECMO in newborns with CDH. J Pediatr Surg. 2020;55(1):39–44. https://doi.org/10.1016/j.jpedsurg.2019.09.050.

Article  PubMed  Google Scholar 

Stewart CL, Mulligan J, Grudic GZ, Pyle L, Moulton SL. A noninvasive computational method for fluid resuscitation monitoring in pediatric burns: a preliminary report. J Burn Care Res Jan-Feb. 2015;36(1):145–50. https://doi.org/10.1097/BCR.0000000000000178.

Article  Google Scholar 

Peterson DL, Schinco MA, Kerwin AJ, Griffen MM, Pieper P, Tepas JJ. Evaluation of initial base deficit as a prognosticator of outcome in the pediatric trauma population. Am Surg. 2004;70(4):326–8.

CAS  PubMed  Google Scholar 

Jung J, Eo E, Ahn K, Noh H, Cheon Y. Initial base deficit as predictors for mortality and transfusion requirement in the severe pediatric trauma except brain injury. Pediatr Emerg Care. 2009;25(9):579–81. https://doi.org/10.1097/PEC.0b013e3181b9b38a.

Article  PubMed  Google Scholar 

Hindy-François C, Meyer P, Blanot S, Marqué S, Sabourdin N, Carli P, Orliaguet G. Admission base deficit as a long-term prognostic factor in severe pediatric trauma patients. J Trauma. 2009;67(6):1272–7. https://doi.org/10.1097/TA.0b013e31819db828.

Article  PubMed  Google Scholar 

Samaraweera SA, Gibbons B, Gour A, Sedgwick P. Arterial versus venous lactate: a measure of sepsis in children. Eur J Pediatr. 2017;176(8):1055–60. https://doi.org/10.1007/s00431-017-2925-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

McGillivray D, Ducharme FM, Charron Y, Mattimoe C, Treherne S. Clinical decisionmaking based on venous versus capillary blood gas values in the well-perfused child. Ann Emerg Med. 1999;34(1):58–63. https://doi.org/10.1016/s0196-0644(99)70272-6.

CAS  Article  PubMed  Google Scholar 

Abuzeid AM, O’Keeffe T. Review of massive transfusion protocols in the injured, bleeding patient. Curr Opin Crit Care. 2019;25(6):661–7.

Article  Google Scholar 

Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

留言 (0)

沒有登入
gif