Amoroso, C. R. & Nunn, C. L. Epidemiological transitions in human evolution and the richness of viruses, helminths, and protozoa. Evol. Med. Public Health 9, 139–148 (2021).
PubMed PubMed Central Article Google Scholar
Hagel, I. et al. Helminthic infection and anthropometric indicators in children from a tropical slum: Ascaris reinfection after anthelmintic treatment. J. Trop. Pediatr. 45, 215–220 (1999).
CAS PubMed Article Google Scholar
Ranque, J. P., Chippaux, A. & Garcia, S. Follow-up of Ascaris lumbricoides and Trichuris trichiura infections in children living in a community treated with ivermectin at 3-monthly intervals. Ann. Tropical Med. Parasitol. 95, 389–393 (2001).
Hesham Al-Mekhlafi, M. et al. Pattern and predictors of soil-transmitted helminth reinfection among aboriginal schoolchildren in rural Peninsular Malaysia. Acta. Trop. 107, 200–204 (2008).
CAS PubMed Article Google Scholar
Saldiva, S. R. M., Carvalho, H. B., Castilho, V. P., Struchiner, C. J. & Massad, E. Malnutrition and susceptibility to enteroparasites: Reinfection rates after mass chemotherapy. Paediatr. Perinat. Epidemiol. 16, 166–171 (2002).
CAS PubMed Article Google Scholar
Crompton, D. W. T. & Nesheim, M. C. Nutritional impact of intestinal helminthiasis during the human life cycle. Annu. Rev. Nutr. 22, 35–59 (2002).
CAS PubMed Article Google Scholar
Rafaluk-Mohr, C. et al. Microbial protection favors parasite tolerance and alters host-parasite coevolutionary dynamics. Curr. Biol. 32, 1593–1598 (2022). e3.
CAS PubMed PubMed Central Article Google Scholar
Inclan-Rico, J. M. & Siracusa, M. C. First Responders: Innate Immunity to Helminths. Trends Parasitol. 34, 861–880 (2018).
CAS PubMed PubMed Central Article Google Scholar
Oliphant, C. J., Barlow, J. L. & Mckenzie, A. N. J. Insights into the initiation of type 2 immune responses. Immunology 134, 378–385 (2011).
CAS PubMed PubMed Central Article Google Scholar
Rapin, A. et al. Infection with a small intestinal helminth, Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine. Int J. Parasitol. 50, 35–46 (2020).
CAS PubMed Article Google Scholar
Ishiwata, K., Nakao, H., Nakamura-Uchiyama, F. & Nawa, Y. Immune-mediated damage is not essential for the expulsion of Nippostrongylus brasiliensis adult worms from the small intestine of mice. Parasite Immunol. 24, 381–386 (2002).
Inagaki-Ohara, K., Sakamoto, Y., Dohi, T. & Smith, A. L. γδ T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology 134, 448–458 (2011).
CAS PubMed PubMed Central Article Google Scholar
Hurst, R. J. M. & Else, K. J. Trichuris muris research revisited: a journey through time. Parasitology 140, 1325–1339 (2013).
Valanparambil, R. M., Tam, M., Jardim, A., Geary, T. G. & Stevenson, M. M. Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4 + Th2 responses and promote chronic infection. Mucosal Immunol. 10, 238–249 (2017).
CAS PubMed Article Google Scholar
Filbey, K. J. et al. Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunol. Cell Biol. 92, 436–448 (2014).
CAS PubMed PubMed Central Article Google Scholar
Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol. 34, 829–846 (2012).
CAS PubMed PubMed Central Article Google Scholar
Cruickshank, S. M. et al. Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection. J. Immunol. 182, 3055–3062 (2009).
CAS PubMed Article Google Scholar
Bancroft, A. J., Else, K. J., Humphreys, N. E. & Grencis, R. K. The effect of challenge and trickle Trichuris muris infections on the polarisation of the immune response. Int J. Parasitol. 31, 1627–1637 (2001).
CAS PubMed Article Google Scholar
Else, K. J., Finkelman, F. D., Maliszewski, C. R. & Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).
CAS PubMed Article Google Scholar
Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).
CAS PubMed PubMed Central Article Google Scholar
Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540–544 (2010).
CAS PubMed Article Google Scholar
Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA. 107, 11489–11494 (2010).
CAS PubMed PubMed Central Article Google Scholar
Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
CAS PubMed PubMed Central Article Google Scholar
Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464, 1362–1366 (2010).
CAS PubMed PubMed Central Article Google Scholar
Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).
CAS PubMed Article Google Scholar
Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).
CAS PubMed PubMed Central Article Google Scholar
Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).
CAS PubMed Article Google Scholar
Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).
CAS PubMed Article Google Scholar
Turner, J. E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).
CAS PubMed PubMed Central Article Google Scholar
Licona-Limón, P., Kim, L. K., Palm, N. W. & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14, 536–542 (2013).
PubMed Article CAS Google Scholar
Soderquest, K. et al. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease. PLOS Genet. 13, e1006587 (2017).
PubMed PubMed Central Article CAS Google Scholar
Schroeder, J.-H. et al. T-Bet Controls Cellularity of Intestinal Group 3 Innate Lymphoid Cells. https://doi.org/10.3389/fimmu.2020.623324
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity 33, 736–751 (2010).
CAS PubMed PubMed Central Article Google Scholar
Forkel, M. & Mjösberg, J. Dysregulation of Group 3 Innate Lymphoid Cells in the Pathogenesis of Inflammatory Bowel Disease. Curr. Aller. Asthma Rep. 16, (2016).
Zeng, B. et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell. Death Dis. 10, (2019).
Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).
CAS PubMed PubMed Central Google Scholar
Campbell, L. et al. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216, 2714–2723 (2019).
CAS PubMed PubMed Central Article Google Scholar
Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: A new mechanism of parasite expulsion. Science 308, 1463–1465 (2005).
CAS PubMed Article Google Scholar
Lebman, D. A. & Coffman, R. L. Interleukin 4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. J. Exp. Med. 168, 853–862 (1988).
CAS PubMed Article Google Scholar
Drake, L. Y., Iijima, K., Bartemes, K. & Kita, H. Group 2 innate lymphoid cells promote an early antibody response to a respiratory antigen in mice.
Comments (0)