Food for thought – ILC metabolism in the context of helminth infections

Amoroso, C. R. & Nunn, C. L. Epidemiological transitions in human evolution and the richness of viruses, helminths, and protozoa. Evol. Med. Public Health 9, 139–148 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Hagel, I. et al. Helminthic infection and anthropometric indicators in children from a tropical slum: Ascaris reinfection after anthelmintic treatment. J. Trop. Pediatr. 45, 215–220 (1999).

CAS  PubMed  Article  Google Scholar 

Ranque, J. P., Chippaux, A. & Garcia, S. Follow-up of Ascaris lumbricoides and Trichuris trichiura infections in children living in a community treated with ivermectin at 3-monthly intervals. Ann. Tropical Med. Parasitol. 95, 389–393 (2001).

CAS  Article  Google Scholar 

Hesham Al-Mekhlafi, M. et al. Pattern and predictors of soil-transmitted helminth reinfection among aboriginal schoolchildren in rural Peninsular Malaysia. Acta. Trop. 107, 200–204 (2008).

CAS  PubMed  Article  Google Scholar 

Saldiva, S. R. M., Carvalho, H. B., Castilho, V. P., Struchiner, C. J. & Massad, E. Malnutrition and susceptibility to enteroparasites: Reinfection rates after mass chemotherapy. Paediatr. Perinat. Epidemiol. 16, 166–171 (2002).

CAS  PubMed  Article  Google Scholar 

Crompton, D. W. T. & Nesheim, M. C. Nutritional impact of intestinal helminthiasis during the human life cycle. Annu. Rev. Nutr. 22, 35–59 (2002).

CAS  PubMed  Article  Google Scholar 

Rafaluk-Mohr, C. et al. Microbial protection favors parasite tolerance and alters host-parasite coevolutionary dynamics. Curr. Biol. 32, 1593–1598 (2022). e3.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Inclan-Rico, J. M. & Siracusa, M. C. First Responders: Innate Immunity to Helminths. Trends Parasitol. 34, 861–880 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Oliphant, C. J., Barlow, J. L. & Mckenzie, A. N. J. Insights into the initiation of type 2 immune responses. Immunology 134, 378–385 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rapin, A. et al. Infection with a small intestinal helminth, Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine. Int J. Parasitol. 50, 35–46 (2020).

CAS  PubMed  Article  Google Scholar 

Ishiwata, K., Nakao, H., Nakamura-Uchiyama, F. & Nawa, Y. Immune-mediated damage is not essential for the expulsion of Nippostrongylus brasiliensis adult worms from the small intestine of mice. Parasite Immunol. 24, 381–386 (2002).

PubMed  Article  Google Scholar 

Inagaki-Ohara, K., Sakamoto, Y., Dohi, T. & Smith, A. L. γδ T cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology 134, 448–458 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hurst, R. J. M. & Else, K. J. Trichuris muris research revisited: a journey through time. Parasitology 140, 1325–1339 (2013).

PubMed  Article  Google Scholar 

Valanparambil, R. M., Tam, M., Jardim, A., Geary, T. G. & Stevenson, M. M. Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4 + Th2 responses and promote chronic infection. Mucosal Immunol. 10, 238–249 (2017).

CAS  PubMed  Article  Google Scholar 

Filbey, K. J. et al. Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunol. Cell Biol. 92, 436–448 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol. 34, 829–846 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cruickshank, S. M. et al. Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection. J. Immunol. 182, 3055–3062 (2009).

CAS  PubMed  Article  Google Scholar 

Bancroft, A. J., Else, K. J., Humphreys, N. E. & Grencis, R. K. The effect of challenge and trickle Trichuris muris infections on the polarisation of the immune response. Int J. Parasitol. 31, 1627–1637 (2001).

CAS  PubMed  Article  Google Scholar 

Else, K. J., Finkelman, F. D., Maliszewski, C. R. & Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).

CAS  PubMed  Article  Google Scholar 

Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540–544 (2010).

CAS  PubMed  Article  Google Scholar 

Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA. 107, 11489–11494 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464, 1362–1366 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

CAS  PubMed  Article  Google Scholar 

Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

CAS  PubMed  Article  Google Scholar 

Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

CAS  PubMed  Article  Google Scholar 

Turner, J. E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Licona-Limón, P., Kim, L. K., Palm, N. W. & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14, 536–542 (2013).

PubMed  Article  CAS  Google Scholar 

Soderquest, K. et al. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease. PLOS Genet. 13, e1006587 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Schroeder, J.-H. et al. T-Bet Controls Cellularity of Intestinal Group 3 Innate Lymphoid Cells. https://doi.org/10.3389/fimmu.2020.623324

Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity 33, 736–751 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Forkel, M. & Mjösberg, J. Dysregulation of Group 3 Innate Lymphoid Cells in the Pathogenesis of Inflammatory Bowel Disease. Curr. Aller. Asthma Rep. 16, (2016).

Zeng, B. et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell. Death Dis. 10, (2019).

Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Campbell, L. et al. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216, 2714–2723 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: A new mechanism of parasite expulsion. Science 308, 1463–1465 (2005).

CAS  PubMed  Article  Google Scholar 

Lebman, D. A. & Coffman, R. L. Interleukin 4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. J. Exp. Med. 168, 853–862 (1988).

CAS  PubMed  Article  Google Scholar 

Drake, L. Y., Iijima, K., Bartemes, K. & Kita, H. Group 2 innate lymphoid cells promote an early antibody response to a respiratory antigen in mice.

Comments (0)

No login
gif