Rouwkema J, Rivron NC, Van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434–41. https://doi.org/10.1016/j.tibtech.2008.04.009.
CAS Article PubMed Google Scholar
Chapla R, West JL. Hydrogel biomaterials to support and guide vascularization. Progress in Biomedical Engineering. 2021;3(1): 012002. https://doi.org/10.1088/2516-1091/abc947.
Jaklenec A, Stamp A, Deweerd E, Sherwin A, Langer R. Progress in the tissue engineering and stem cell industry “are we there yet?” Tissue Eng Part B Rev. 2012;18(3):155–66. https://doi.org/10.1089/ten.TEB.2011.0553.
Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82. https://doi.org/10.1089/ten.TEB.2012.0012.
CAS Article PubMed PubMed Central Google Scholar
Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937–45. https://doi.org/10.1038/nature04479.
CAS Article PubMed Google Scholar
Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol. 2000;50(1/2):1–15. https://doi.org/10.1023/a:1006493130855.
CAS Article PubMed Google Scholar
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.
CAS Article PubMed PubMed Central Google Scholar
Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater. 2018;3(4):389–400. https://doi.org/10.1016/j.bioactmat.2018.05.002.
Article PubMed PubMed Central Google Scholar
Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–62. https://doi.org/10.1021/nn5020787.
CAS Article PubMed PubMed Central Google Scholar
Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671–4. https://doi.org/10.1038/386671a0.
CAS Article PubMed Google Scholar
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–80. https://doi.org/10.1021/cr000108x.
CAS Article PubMed Google Scholar
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. Prog Biomed Eng (Bristol). 2020;2(1). https://doi.org/10.1088/2516-1091/ab5637.
Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323–37. https://doi.org/10.1007/s10439-013-0859-6.
Brouns JEP, Dankers PYW. Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell–material interactions. Biomacromol. 2021;22(1):4–23. https://doi.org/10.1021/acs.biomac.0c00930.
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. https://doi.org/10.1038/s41392-021-00512-8.
CAS Article PubMed PubMed Central Google Scholar
• Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, et al. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: a superior alternative to methacrylated gelatin? Mater Sci Eng, C. 2021;130. Findings from this study was one of the first of its kind to methacrylate collagen to improve mechanical properties in tissue engineered constructs. Developing more unique ways to chemicaly modify natural polymers will provide additional options for hydrogel design and incorporation into TECs.
Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin — oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107:1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.
CAS Article PubMed Google Scholar
Loureiro J, Torres AL, Neto T, Aguiar P, Barrias CC, Pinto MT, et al. Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. Mater Sci Eng, C. 2019;104: 109847. https://doi.org/10.1016/j.msec.2019.109847.
Yang R, Huang J, Zhang W, Xue W, Jiang Y, Li S, et al. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohyd Polym. 2021;273: 118607. https://doi.org/10.1016/j.carbpol.2021.118607.
Jiang M, Pan Y, Liu Y, Dai K, Zhang Q, Wang J. Effect of sulfated chitosan hydrogel on vascularization and osteogenesis. Carbohyd Polym. 2022;281: 119059. https://doi.org/10.1016/j.carbpol.2021.119059.
Fu W, Xu P, Feng B, Lu Y, Bai J, Zhang J, et al. A hydrogel derived from acellular blood vessel extracellular matrix to promote angiogenesis. J Biomater Appl. 2019;33(10):1301–13. https://doi.org/10.1177/0885328219831055.
CAS Article PubMed Google Scholar
Dikici S, Claeyssens F, Macneil S. Decellularised baby spinach leaves and their potential use in tissue engineering applications: studying and promoting neovascularisation. J Biomater Appl. 2019;34(4):546–59. https://doi.org/10.1177/0885328219863115.
Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63(5):492–6. https://doi.org/10.1203/pdr.0b013e31816c5bc3.
CAS Article PubMed Google Scholar
Karami A, Tebyanian H, Sayyad Soufdoost R, Motavallian E, Barkhordari A, Nourani MR. Extraction and characterization of collagen with cost-effective method from human placenta for biomedical applications. World J Plast Surg. 2019;8(3):352–8. https://doi.org/10.29252/wjps.8.3.352.
Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2013;101B(1):187–99. https://doi.org/10.1002/jbm.b.32817.
Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, et al. 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers (Basel). 2016;8(8). https://doi.org/10.3390/polym8080269.
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv Healthc Mater. 2022;11(2): e2101873. https://doi.org/10.1002/adhm.202101873.
CAS Article PubMed Google Scholar
Navaei A, Rahmani Eliato K, Ros R, Migrino RQ, Willis BC, Nikkhah M. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomaterials Science. 2019;7(2):585–95. https://doi.org/10.1039/C8BM01050A.
CAS Article PubMed Google Scholar
Nikkhah M, Akbari M, Paul A, Memic A, Dolatshahi-Pirouz A, Khademhosseini A. Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. Biomaterials from Nature for Advanced Devices and Therapies. 2016;37–62.
Joy J, Pereira J, Aid-Launais R, Pavon-Djavid G, Ray AR, Letourneur D, et al. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol. 2018;107(Pt B):1922–35. https://doi.org/10.1016/j.ijbiomac.2017.10.071.
CAS Article PubMed Google Scholar
Litvinov RI, Weisel JW. What is the biological and clinical relevance of fibrin? Semin Thromb Hemost. 2016;42(4):333–43. https://doi.org/10.1055/s-0036-1571342.
CAS Article PubMed PubMed Central Google Scholar
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci: Materials in Medicine. 2019;30(10). https://doi.org/10.1007/s10856-019-6318-7.
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–61. https://doi.org/10.2147/ijn.s124671.
Silva J, Bento AR, Barros D, Laundos TL, Sousa SR, Quelhas P, et al. Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta Biomater. 2017;59:243–56. https://doi.org/10.1016/j.actbio.2017.07.013.
CAS Article PubMed Google Scholar
Leu S-J, Liu Y, Chen N, Chen C-C, Lam SCT, Lau LF. Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61)*. J Biol Chem. 2003;278(36):33801–8. https://doi.org/10.1074/jbc.M305862200.
CAS Article PubMed Google Scholar
Weksler B, Romero IA, Couraud P-O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS. 2013;10(1):16. https://doi.org/10.1186/2045-8118-10-16.
Article PubMed PubMed Central Google Scholar
Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter. 2012;8(12):3280–94. https://doi.org/10.1039/C2SM06463D.
CAS Article PubMed PubMed Central Google Scholar
Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, et al. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces. 2021;13(48):56892–908. https://doi.org/10.1021/acsami.1c16481.
CAS Article PubMed Google Scholar
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology. 2012;4(3):253–8. https://doi.org/10.4161/derm.21923.
CAS Article PubMed PubMed Central Google Scholar
Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: A versatile biomaterial in tissue engineering. Plastic and Aesthetic Research. 2017;4(12):219. https://doi.org/10.20517/2347-9264.2017.71.
Bajaj I, Singhal R. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Biores Technol. 2011;102(10):5551–61. https://doi.org/10.1016/j.biortech.2011.02.047.
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: Opportunities and challenges in biomedical applications. Chem Rev. 2018;118(14):6766–843. https://doi.org/10.1021/acs.chemrev.6b00275.
Comments (0)