Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological implications of myocardial scar structure. Compr Physiol. 2015;5(4):1877–909. https://doi.org/10.1002/cphy.c140067.
Article PubMed PubMed Central Google Scholar
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. https://doi.org/10.1161/CIR.0000000000000485.
Article PubMed PubMed Central Google Scholar
Jones NR, Roalfe AK, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail. 2019;21(11):1306–25. https://doi.org/10.1002/ejhf.1594.
Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052.
Article PubMed PubMed Central Google Scholar
Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141–8. https://doi.org/10.1016/S0140-6736(04)16626-9.
Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT, et al. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J. 2010;37(4):412–20.
PubMed PubMed Central Google Scholar
Traverse JH, Henry TD, Pepine CJ, Willerson JT, Chugh A, Yang PC, et al. TIME trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res. 2018;122(3):479–88. https://doi.org/10.1161/CIRCRESAHA.117.311466.
CAS Article PubMed Google Scholar
Henry TD, Pepine CJ, Lambert CR, Traverse JH, Schatz R, Costa M, et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv. 2017;89(2):169–77. https://doi.org/10.1002/ccd.26601.
Surder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127(19):1968–79. https://doi.org/10.1161/CIRCULATIONAHA.112.001035.
Wollert KC, Meyer GP, Muller-Ehmsen J, Tschope C, Bonarjee V, Larsen AI, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J. 2017;38(39):2936–43. https://doi.org/10.1093/eurheartj/ehx188.
CAS Article PubMed Google Scholar
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, et al. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circulation: Genomic and Precision Medicine. 2018;11(1). https://doi.org/10.1161/hcg.0000000000000043.
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, et al. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother. 2021;138: 111425. https://doi.org/10.1016/j.biopha.2021.111425.
CAS Article PubMed Google Scholar
Klein SG, Alsolami SM, Steckbauer A, Arossa S, Parry AJ, Ramos Mandujano G, et al. A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nat Biomed Eng. 2021;5(8):787–92. https://doi.org/10.1038/s41551-021-00775-0.
Refresh cell culture. Nat Biomed Eng. 2021;5(8):783–4. https://doi.org/10.1038/s41551-021-00790-1.
Banerjee MN, Bolli R, Hare JM. Clinical studies of cell therapy in cardiovascular medicine: recent developments and future directions. Circ Res. 2018;123(2):266–87. https://doi.org/10.1161/CIRCRESAHA.118.311217.
CAS Article PubMed PubMed Central Google Scholar
Lau JF, Anderson SA, Adler E, Frank JA. Imaging approaches for the study of cell-based cardiac therapies. Nat Rev Cardiol. 2010;7(2):97–105. https://doi.org/10.1038/nrcardio.2009.227.
Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35. https://doi.org/10.1016/j.jacc.2018.12.054.
Article PubMed PubMed Central Google Scholar
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58. https://doi.org/10.1056/NEJMra1814259.
Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial intelligence in nuclear cardiology: adding value to prognostication. Current Cardiovascular Imaging Reports. 2019;12(5). https://doi.org/10.1007/s12410-019-9490-8.
Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64. https://doi.org/10.1136/heartjnl-2017-311198.
Martin-Isla C, Campello VM, Izquierdo C, Raisi-Estabragh Z, Baessler B, Petersen SE, et al. Image-based cardiac diagnosis with machine learning: a review. Front Cardiovasc Med. 2020;7:1. https://doi.org/10.3389/fcvm.2020.00001.
Article PubMed PubMed Central Google Scholar
Cetin I, Raisi-Estabragh Z, Petersen SE, Napel S, Piechnik SK, Neubauer S, et al. Radiomics signatures of cardiovascular risk factors in cardiac MRI: results from the UK Biobank. Front Cardiovasc Med. 2020;7: 591368. https://doi.org/10.3389/fcvm.2020.591368.
CAS Article PubMed PubMed Central Google Scholar
Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging. 2017;10(10). https://doi.org/10.1161/CIRCIMAGING.117.005614.
Leiner T, Rueckert D, Suinesiaputra A, Baessler B, Nezafat R, Isgum I, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson. 2019;21(1):61. https://doi.org/10.1186/s12968-019-0575-y.
Article PubMed PubMed Central Google Scholar
Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.
Article PubMed PubMed Central Google Scholar
Tomaszewski JE, Hipp J, Tangrea M, Madabhushi A. Machine vision and machine learning in digital pathology. In: Linda MM, Richard NM, editors. Pathobiology of human disease. San Diego: Academic Press; 2014. p. 3711–22.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.
CAS Article PubMed Google Scholar
El-Amir H, Hamdy M. A gentle introduction. Apress; 2020:p. 3–36.
Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: practical primer for clinical research in cardiovascular disease. J Am Heart Assoc. 2019;8(17):e012788. https://doi.org/10.1161/JAHA.119.012788.
Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, et al. Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med. 2020;7:25. https://doi.org/10.3389/fcvm.2020.00025.
CAS Article PubMed PubMed Central Google Scholar
Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. CoRR. 2015;abs/1412.6572.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE. 2015.
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–51. https://doi.org/10.1109/TPAMI.2016.2572683.
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Springer International Publishing; 2015. p. 234–41.
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging. 2020;39(6):1856–67. https://doi.org/10.1109/TMI.2019.2959609.
• Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access. 2021;9:82031–57. https://doi.org/10.1109/ACCESS.2021.3086020. Findings from this review summarize the basics and contemporary use of U-Net neural networks for biomedical image segmentation.
Poetsch MS, Strano A, Guan K. Human–induced pluripotent stem cells: from cell origin, genomic stability, and epigenetic memory to translational medicine. Stem Cells. 2022. https://doi.org/10.1093/stmcls/sxac020.
Article PubMed PubMed Central Google Scholar
Streckfuss-Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2012;34(33):2618–29. https://doi.org/10.1093/eurheartj/ehs203.
CAS Article PubMed Google Scholar
Hu S, Zhao M-T, Jahanbani F, Shao N-Y, Lee WH, Chen H, et al. Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells. JCI Insight. 2016;1(8). https://doi.org/10.1172/jci.insight.85558.
Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem Cells International. 2014;2014:1–12. https://doi.org/10.1155/2014/768391.
McGillicuddy N, Floris P, Albrecht S, Bones J. Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett. 2018;40(1):5–21. https://doi.org/10.1007/s10529-017-2437-8.
CAS Article PubMed Google Scholar
Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(51):20569–74. https://doi.org/10.1073/pnas.1319061110.
CAS Article PubMed PubMed Central Google Scholar
Tu C, Chao BS, Wu JC. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2018;123(5):512–4. https://doi.org/10.1161/circresaha.118.313472.
CAS Article PubMed PubMed Central Google Scholar
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol. 2020;598(14):2941–56. https://doi.org/10.1113/jp276754.
CAS Article PubMed Google Scholar
Williams B, Löbel W, Finklea F, Halloin C, Ritzenhoff K, Manstein F, et al. Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling. Frontiers in Bioengineering and Biotechnology. 2020;8. https://doi.org/10.3389/fbioe.2020.00851.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.
Comments (0)