A tough trek in the development of an anti-amyloid therapy for Alzheimer's disease: Do we see hope in the distance?

Alexander G.C. Knopman D.S. Emerson S.S. et al.

Revisiting FDA approval of Aducanumab.

N. Engl. J. Med.

Controversy and Progress in Alzheimer’s disease - FDA approval of Aducanumab.

N. Engl. J. Med. 385 (): 771-774https://doi.org/10.1056/NEJMp2111320

Cleveland Clinic, Mount Sinai and Providence Won’t Give Biogen’s New Alzheimer’s drug.

Wall Street J. ()Baldwin J.W. Dolan D. Anderson K. Hutter J.D.

Monoclonal Antibodies Directed Against Amyloid for the Treatment of Alzheimer’s Disease. Proposed National Coverage Determination for Monoclonal Antibodies Directed Against Amyloid for the Treatment of Alzheimer’s DiseasePress.

Dunn B. Stein P. Cavazzoni P.

Approval of Aducanumab for Alzheimer Disease-The FDA’s perspective.

JAMA Intern. Med. 181 (): 1276-1278https://doi.org/10.1001/jamainternmed.2021.4607

Aducanumab: what about the patient?.

Ann. Neurol. 90 (): 334-335https://doi.org/10.1002/ana.26181

Treatments for Alzheimer’s disease emerge.

Science. 373: 624-626

Dementia Fact sheet.

World Health Organization, Todd S. Barr S. Roberts M. Passmore A.P.

Survival in dementia and predictors of mortality: a review.

Int J Geriatr Psychiatry. 28: 1109-1124Meek P.D. McKeithan K. Schumock G.T.

Economic considerations in Alzheimer’s disease.

Pharmacotherapy. 18 : 68-73

Economic considerations in the treatment and management of Alzheimer’s disease.

Am. J. Health Syst. Pharm. 55: S17-S21

Alzheimer's disease facts and figures.

Alzheimers Dement. 17: 327-406Jack Jr., C.R. Bennett D.A. Blennow K. et al.

NIA-AA research framework: toward a biological definition of Alzheimer’s disease.

Alzheimers Dement. 14: 535-562Dubois B. Villain N. Frisoni G.B. et al.

Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group.

Lancet Neurol. 20: 484-496Tackenberg C. Kulic L. Nitsch R.M.

Familial Alzheimer’s disease mutations at position 22 of the amyloid beta-peptide sequence differentially affect synaptic loss, tau phosphorylation and neuronal cell death in an ex vivo system.

PLoS One. 15e0239584Vilchez D. Saez I. Dillin A.

The role of protein clearance mechanisms in organismal ageing and age-related diseases.

Nat. Commun. 5: 5659

Amyloid deposition as the central event in the aetiology of Alzheimer’s disease.

Trends Pharmacol. Sci. 12: 383-388

Alzheimer’s disease-do tauists and baptists finally shake hands?.

Trends Neurosci. 25: 22-26Wallace W.C. Lieberburg I. Schenk D. Vigo-Pelfrey C. Davis K.L. Haroutunian V.

Chronic elevation of secreted amyloid precursor protein in subcortically lesioned rats, and its exacerbation in aged rats.

J. Neurosci. 15: 4896-4905Wallace W.C. Akar C.A. Lyons W.E.

Amyloid precursor protein potentiates the neurotrophic activity of NGF.

Brain Res. Mol. Brain Res. 52: 201-212Luo J.J. Wallace M.S. Hawver D.B. Kusiak J.W. Wallace W.C.

Characterization of the neurotrophic interaction between nerve growth factor and secreted alpha-amyloid precursor protein.

J. Neurosci. Res. 63: 410-420Rohn T.T. Ivins K.J. Bahr B.A. Cotman C.W. Cribbs D.H.

A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis.

J. Neurochem. 74: 2331-2342Van Broeck B. Van Broeckhoven C. Kumar-Singh S.

Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches.

Neurodegener. Dis. 4: 349-365

Alzheimer mechanisms and therapeutic strategies.

Cell. 148: 1204-1222Luo J.J. Kusiak J.W. Wallace M. Wallace W.C.

Dual roles of amyloid-beta and secreted forms of amyloid precursor protein in culture.

Wallace W.C. Luo J.J. Wallace M. Hawyer D. Kusiak J.W.

A truncated form of secreted amyloid precursor protein induces apoptosis of neurons in culture.

Neurobiol. Aging. 21: 260Nistor M. Don M. Parekh M. et al.

Alpha- and beta-secretase activity as a function of age and beta-amyloid in down syndrome and normal brain.

Neurobiol. Aging. 28: 1493-1506

Alzheimer disease and down syndrome: factors in pathogenesis.

Neurobiol. Aging. 26: 383-389

Alzheimer disease: an update on pathobiology and treatment strategies.

Cell. 179: 312-339Polvikoski T. Sulkava R. Haltia M. et al.

Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein.

N. Engl. J. Med. 333: 1242-1247Weller R.O. Preston S.D. Subash M. Carare R.O.

Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease.

Alzheimers Res. Ther. 1: 6

PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons.

J. Neurochem. 74: 125-133Takeuchi A. Irizarry M.C. Duff K. et al.

Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss.

Am. J. Pathol. 157: 331-339Oddo S. Billings L. Kesslak J.P. Cribbs D.H. LaFerla F.M.

Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome.

Neuron. 43: 321-332Behl C. Davis J.B. Lesley R. Schubert D.

Hydrogen peroxide mediates amyloid beta protein toxicity.

Cell. 77: 817-827Rottkamp C.A. Raina A.K. Zhu X. et al.

Redox-active iron mediates amyloid-beta toxicity.

Free Radic. Biol. Med. 30: 447-450Smith D.P. Smith D.G. Curtain C.C. et al.

Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge.

J. Biol. Chem. 281: 15145-15154Yankner B.A. Duffy L.K. Kirschner D.A.

Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides.

Science. 250: 279-282

Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease.

IUBMB Life. 58: 686-694

Oxidative stress and Alzheimer disease.

Am. J. Clin. Nutr. 71: 621S-629SLu D.C. Soriano S. Bredesen D.E. Koo E.H.

Caspase cleavage of the amyloid precursor protein modulates amyloid beta-protein toxicity.

J. Neurochem. 87: 733-741Liu T. Perry G. Chan H.W. et al.

Amyloid-beta-induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression.

J. Neurochem. 88: 554-563

Mucke L, Selkoe DJ. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med;2:a006338.

Freir DB, Fedriani R, Scully D, et al. Abeta oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol Aging;32:2211–2218.

Reed MN, Hofmeister JJ, Jungbauer L, et al. Cognitive effects of cell-derived and synthetically derived Abeta oligomers. Neurobiol Aging;32:1784–1794.

Bishop G.M. Robinson S.R.

Deposits of fibrillar A beta do not cause neuronal loss or ferritin expression in adult rat brain.

J. Neural Transm. (Vienna). 110: 381-400Rapoport M. Dawson H.N. Binder L.I. Vitek M.P. Ferreira A.

Tau is essential to beta -amyloid-induced neurotoxicity.

Proc. Natl. Acad. Sci. U. S. A. 99: 6364-6369Gomez-Isla T. Hollister R. West H. et al.

Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease.

Ann. Neurol. 41: 17-24Holmes C. Boche D. Wilkinson D. et al.

Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial.

Lancet. 372: 216-223

Can Alzheimer disease be prevented by amyloid-beta immunotherapy?.

Nat. Rev. Neurol. 6: 108-119Vandenberghe R. Riviere M.E. Caputo A. et al.

Active Abeta immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study.

Alzheimers Dement (N Y). 3: 10-22Turner R.S. Thomas R.G. Craft S. et al.

A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease.

Neurology. 85: 1383-1391Schneeberger A. Hendrix S. Mandler M. et al.

Results from a phase II study to assess the clinical and immunological activity of AFFITOPE(R) AD02 in patients with early Alzheimer’s disease.

J Prev Alzheimers Dis. 2: 103-114Panza F. Lozupone M. Logroscino G. Imbimbo B.P.

A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease.

Nat. Rev. Neurol. 15: 73-88Ohno M. Sametsky E.A. Younkin L.H. et al.

BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease.

Neuron. 41: 27-33Egan M.F. Kost J. Voss T. et al.

Randomized trial of Verubecestat for prodromal Alzheimer’s disease.

N. Engl. J. Med. 380: 1408-1420Goedert M. Spillantini M.G. Crowther R.A.

Tau proteins and neurofibrillary degeneration.

Brain Pathol. 1: 279-286Iqbal K. Alonso Adel C. Chen S. et al.

Tau pathology in Alzheimer disease and other tauopathies.

Biochim. Biophys. Acta. 1739: 198-210

The role of tau phosphorylation and cleavage in neuronal cell death.

Front. Biosci. 12: 733-756

Tau in physiology and pathology.

Nat. Rev. Neurosci. 17: 22-35Strang K.H. Golde T.E. Giasson B.I.

MAPT mutations, tauopathy, and mechanisms of neurodegeneration.

Lab. Investig. 99: 912-928Hutton M. Lendon C.L. Rizzu P. et al.

Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17.

Nature. 393: 702-705Poorkaj P. Bird T.D. Wijsman E. et al.

Tau is a candidate gene for chromosome 17 frontotemporal dementia.

Ann. Neurol. 43: 815-825Bugiani O. Murrell J.R. Giaccone G. et al.

Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau.

J. Neuropathol. Exp. Neurol. 58: 667-677Spillantini M.G. Murrell J.R. Goedert M. Farlow M.R. Klug A. Ghetti B.

Mutation in the tau gene in familial multiple system tauopathy with presenile dementia.

Proc. Natl. Acad. Sci. 95: 7737-7741Kurosinski P. Guggisberg M. Götz J.

Alzheimer’s and Parkinson’s disease–overlapping or synergistic pathologies?.

Trends Mol. Med. 8: 3-5Goedert M. Spillantini M. Crowther R. et al.

Tau gene mutation in familial progressive subcortical gliosis.

Nat. Med. 5: 454-457Yasuda M. Kawamata T. Komure O. Kuno S. D’Souza I. Poorkaj P. Kawai J. Tanimukai S. Yamamoto Y. Hasegawa H. Sasahara M. Hazama F. Schellenberg G.D. Tanaka C.

A mutation in the microtubule-associated protein tau in pallido-nigro-luysian degeneration.

Neurology. 53 (): 864-868https://doi.org/10.1212/wnl.53.4.864Ishihara T. Zhang B. Higuchi M. Yoshiyama Y. Trojanowski J.Q. Lee V.M.-Y.

Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice.

Am. J. Pathol. 158: 555-562Probst A. Götz J. Wiederhold K. et al.

Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein.

Acta Neuropathol. 99: 469-481Spittaels K. Van den Haute C. Van Dorpe J. et al.

Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein.

Am. J. Pathol. 155: 2153-2165Hirano A. Nakano I. Kurland L.T. Mulder D.W. Holley P.W. Saccomanno G.

Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis.

J. Neuropathol. Exp. Neurol. 43: 471-480Rouleau G.A. Clark A.W. Rooke K. et al.

SOD1 mutation is assosiated with accumulation of neurofilaments in amyotrophic lateral scelaries.

Ann. Neurol. 39: 128-131Munoz D. Greene C. Perl D. Selkoe D.

Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients.

J. Neuropathol. Exp. Neurol. 47: 9-18Zhou L. Miller B. McDaniel C. Kelly L. Kim O. Miller C.

Frontotemporal dementia: neuropil spheroids and presynaptic terminal degeneration.

Annals of Neurology. 44: 99-109Lee V.M.-Y. Kenyon T.K. Trojanowski J.Q.

Transgenic animal models of tauopathies.

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1739: 251-259

Davies AP and Moloney AJF.

Lancet. ii: 1403Bowen D.M. Smith C.B. White P. Davison A.N.

Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies.

Brain. 99: 459-496Perry E.K. Gibson P.H. Blessed G. Perry R.H. Tomlinson B.E.

Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue.

J. Neurol. Sci. 34: 247-265Francis P.T. Palmer A.M. Snape M. Wilcock G.K.

The cholinergic hypothesis of Alzheimer’s disease: a review of progress.

J. Neurol. Neurosurg. Psychiatry. 66: 137-147Martorana A. Esposito Z. Koch G.

Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease?.

CNS Neurosci Ther. 16: 235-245

Brain drugs of the future.

BMJ. 317: 1698-1701Sinyor B. Mineo J. Ochner C.

Alzheimer’s disease, inflammation, and the role of antioxidants.

J Alzheimers Dis Rep. 4: 175-183Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T.

Inflammation as a central mechanism in Alzheimer’s disease.

Alzheimers Dement (N Y). 4: 575-590Eikelenboom P. van Exel E. Hoozemans J.J. Veerhuis R. Rozemuller A.J. van Gool W.A.

Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease.

Neurodegener. Dis. 7: 38-41Greig N.H. Mattson M.P. Perry T. et al.

New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-alpha inhibitors, and GLP-1 receptor agonists.

Ann. N. Y. Acad. Sci. 1035: 290-315Hickman S. Izzy S. Sen P. Morsett L. El Khoury J.

Microglia in neurodegeneration.

Nat. Neurosci. 21: 1359-1369Kempuraj D. Thangavel R. Natteru P. et al.

Neuroinflammation induces neurodegeneration.

Journal of Neurology, Neurosurgery and Spine. 1Glass C.K. Saijo K. Winner B. Marchetto M.C. Gage F.H.

Mechanisms underlying inflammation in neurodegeneration.

Cell. 140: 918-934

Microglia as neuroprotective, immunocompetent cells of the CNS.

Glia. 40: 133-139Akiyama H. Barger S. Barnum S. et al.

Inflammation and Alzheimer’s disease.

Neurobiol. Aging. 21: 383-421Wyss-Coray T. Loike J.D. Brionne T.C. et al.

Adult mouse astrocytes degrade amyloid-β in vitro and in situ.

Nat. Med. 9: 453-457Cartier L. Hartley O. Dubois-Dauphin M. Krause K.-H.

Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases.

Brain Res. Rev. 48: 16-42Ballatore C. Lee V.M.-Y. Trojanowski J.Q.

Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.

Nat. Rev. Neurosci. 8: 663-672

Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes.

Translational Neurodegeneration. 9: 1-12Guzman-Martinez L. Maccioni R.B. Andrade V. Navarrete L.P. Pastor M.G. Ramos-Escobar N.

Neuroinflammation as a common feature of neurodegenerative disorders.

Front. Pharmacol. 10: 1008Cortés N. Andrade V. Guzmán-Martínez L. Estrella M. Maccioni R.B.

Neuroimmune tau mechanisms: their role in the progression of neuronal degeneration.

Int. J. Mol. Sci. 19: 956Maccioni R.B. Rojo L.E. Fernandez J.A. Kuljis R.O.

The role of neuroimmunomodulation in Alzheimer’s disease.

Ann. N. Y. Acad. Sci. 1153: 240-246Abbott N.J. Patabendige A.A. Dolman D.E. Yusof S.R. Begley D.J.

Structure and function of the blood–brain barrier.

Neurobiol. Dis. 37: 13-25Baufeld C. O’Loughlin E. Calcagno N. Madore C. Butovsky O.

Differential contribution of microglia and monocytes in neurodegenerative diseases.

J. Neural Transm. 125: 809-826Liddelow S.A. Barres B.A.

Reactive astrocytes: production, function, and therapeutic potential.

Immunity. 46: 957-967Oksanen M. Lehtonen S. Jaronen M. Goldsteins G. Hämäläinen R.H. Koistinaho J.

Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms.

Cell. Mol. Life Sci. 76: 2739-2760Andreadou E. Pantazaki A.A. Daniilidou M. Tsolaki M.

Rhamnolipids, microbial virulence factors, in Alzheimer’s disease.

J. Alzheimers Dis. 59: 209-222Goldman S.M. Kamel F. Ross G.W. et al.

Peptidoglycan recognition protein genes and risk of Parkinson’s disease.

Mov. Disord. 29: 1171-1180Berer K. Gerdes L.A. Cekanaviciute E. et al.

Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice.

Proc. Natl. Acad. Sci. 114: 10719-10724Franceschi C. Bonafe M. Valensin S. et al.

Inflamm-aging: an evolutionary perspective on immunosenescence.

Ann. N. Y. Acad. Sci. 908: 244-254Yankner B.A. Lu T. Loerch P.

The aging brain.

Annu Rev Pathol Mech Dis. 3: 41-66Aisen P.S. Davis K.L. Berg J.D. Schafer K. Campbell K. Thomas R.G. Weiner M.F. Farlow M.R. Sano M. Grundman M. Thal L.J.

A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study.

Neurology. 54 (): 588-593https://doi.org/10.1212/wnl.54.3.588Aisen P.S. Schafer K.A. Grundman M. et al.

Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial.

Jama. 289: 2819-2826

Aspirin in Alzheimer's disease (AD2000): a randomised open-label trial.

The Lancet Neurology. 7: 41-49Scharf S. Mander A. Ugoni A. Vajda F. Christophidis N.

A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease.

Neurology. 53 (): 197-201https://doi.org/10.1212/wnl.53.1.197Thal L.J. Ferris S.H. Kirby L. et al.

A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment.

Neuropsychopharmacology. 30: 1204-1215

Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib.

Arch. Neurol. 65: 896Pasqualetti P. Bonomini C. Dal Forno G. et al.

A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease.

Aging Clin. Exp. Res. 21: 102-110Rogers J. Kirby L.C. Hempelman S.R. Berry D.L. McGeer P.L. Kaszniak A.W. Zalinski J. Cofield M. Mansukhani L. Willson P. et al.

Clinical trial of indomethacin in Alzheimer’s disease.

Neurology. 43 (): 1609-1611https://doi.org/10.1212/wnl.43.8.1609Familian A. Boshuizen R.S. Eikelenboom P. Veerhuis R.

Inhibitory effect of minocycline on amyloid β fibril formation and human microglial activation.

Glia. 53: 233-240Garcez M.L. Mina F. Bellettini-Santos T. et al.

Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice.

Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 77: 23-31Howard R. Zubko O. Bradley R. et al.

Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial.

JAMA neurology. 77: 164-174Kriz J. Nguyen M.D. Julien J.-P.

Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis.

Neurobiol. Dis. 10: 268-278Gordon P.H. Moore D.H. Miller R.G. et al.

Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial.

The Lancet Neurology. 6: 1045-1053Choi S.-H. Aid S. Bosetti F.

The distinct roles of cyclooxygenase-1 and-2 in neuroinflammation: implications for translational research.

Trends Pharmacol. Sci. 30: 174-181Reines S. Block G. Morris J. et al.

Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study.

Neurology. 62: 66-71Heneka M.T. Carson M.J. El Khoury J. et al.

Neuroinflammation in Alzheimer’s disease.

Lancet Neurol. 14: 388-405

Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia.

Lancet Neurol. 18: 296-306Cataldo J.K. Prochaska J.J. Glantz S.A.

Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation.

J. Alzheimers Dis. 19: 465-480

Air pollution, oxidative stress, and Alzheimer’s disease.

J. Environ. Public Health. 2012472751Paul K.C. Haan M. Mayeda E.R. Ritz B.R.

Ambient air pollution, noise, and late-life cognitive decline and dementia risk.

Annu. Rev. Public Health. 40: 203-220

Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease.

Curr. Alzheimer Res. 4: 191-197Xu H. Finkelstein D.I. Adlard P.A.

Interactions of metals and apolipoprotein E in Alzheimer’s disease.

Front. Aging Neurosci. 6:

留言 (0)

沒有登入
gif