Cengel YA, Boles MA (2008) Thermodynamics: an engineering approach. McGraw-Hill, New York
Tolman RC (1917) The measurable quantities of physics. Phys Rev Series II 9(3):237–253
McNaught AD, Wilkinson A, Nic M, Jirat J, Kosata B, Jenkins A (2014) IUPAC Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Version. 2.3.3. Oxford, Blackwell Scientific Publications
Canagaratha SG (1992) Intensive and extensive: underused concepts. J Chem Educ 69(12):957–963
Redlich O (1970) Intensive and extensive properties. J Chem Educ 47(2):154–156
Euler L (1755) Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. Ticini, in typographeo Petri Galeatii
Philip WE (1900) A slight extension of Euler’s Theorem on Homogeneous Functions. Proc Edinb Math Soc 18:101–102
Keszei E (2012) Chemical Thermodynamics: An Introduction. Springer Science & Business Media, Berlin
Alberty RA (2001) Use of Legendre transforms in chemical thermodynamics. Pure Appl Chem 73(8):1349–1380
Gibbs JW (1873) Graphical methods in the thermodynamics of fluids. Trans Connecticut Acad Arts Sci 2:309–342
Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Trans Acad Arts Sci 43:259–293
Lewis GN (1907) Umriß eines neuen Systems der chemischen Thermodynamik. Zeitschrift für Physikalische Chemie Stochiometrie und Verwandtschaftslehre 61(2):129–165
Salzman WR (2011) Physical chemistry. Available at https://www.passeidireto.com/arquivo/3793575/salzman-fisico-quimica (Access date – 22. 09. 2021)
Ceder G, Van der Ven A (2003) Materials at equilibrium (SMA 5111). Massachusetts Institute of Technology. Available at https://ocw.mit.edu/courses/materials-science-and-engineering/3-20-materials-at-equilibrium-sma-5111-fall-2003 (Access date – 22. 09. 2021)
Gmehling J, Kolbe B, Kleiber M, Rarey J (2012) Chemical Thermodynamics for Process Simulation. John Wiley & Sons
de Nevers N (2012) Physical and Chemical Equilibrium for Chemical Engineers. John Wiley & Sons
Malijevský A, Novák JP, Labík S, Malijevská I (2000) Breviář fyzikální chemie. Praha
DeVoe H (2016) Thermodynamics and Chemistry. 2nd Edition. Version 10. Available at http://www2.chem.umd.edu/thermobook/v10-screen.pdf (Access date – 22. 09. 2021)
Blandamer MJ, Reis JCR (2004) A notebook for topics in thermodynamics of solutions and liquid mixtures. University of Leicester. Available at http://www.le.ac.uk/chemistry/thermodynamics (Access date – 22. 09. 2021)
Narayanan KV (2013) A textbook on chemical engineering thermodynamics. PHI Learning Pvt. Ltd
Athavale VD (2007) Experimental physical chemistry. New Age International
Walas SM (1985) Phase Equilibrium in Chemical Engineering. Butterworth Publishers, Boston
Atkins P, de Paula J (2010) Atkins’ Physical Chemistry. OUP, Oxford
Atkins P, de Paula J (2013) Elements of Physical Chemistry. OUP, Oxford
Dogra S (1984) Physical Chemistry Through Problems. New Age International
Garland C, Nibler J, Shoemaker D (2003) Experiments in Physical Chemistry, 7th Edition. McGraw-Hill Publishing
Tyagi P (2006) Thermochemistry. Discovery Publishing House
Raj G (2009) Advanced Physical Chemistry. 35th Edition. Ed. Chatwal M. Krishna Prakashan Media
Singh NB, Das SS, Singh AK (2009) Physical Chemistry. Volume 2. New Age International
Satake M, Nagahiro T (1990) Modern dictionary: physical chemistry. Discovery Publishing House
Laptev DM (1992) Termodinamika metallurgičeskih rastvorov. Chelyabinsk, Metallurgiâ
Pfaff JF (1814–1815) Methodes generalis aequationes differentiarum partialium, nec non aequationes differentiales vulgares, ultrasque primis ordinis, inter quotcunque variabiles, complete integrandi. Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin. Mathematische Klasse 76–135
Cartan É (1899) Sur certaines expressions différentielles et le problème de Pfaff. Annales scientifiques de l’École Normale Supérieure. Troisième série 16:239–332
Carathéodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Ann 67(3):355–386
Flanders H (1963) Differential Forms with Applications to the Physical Sciences. Academic Press, New York
Sychev VV (1991) The differential equations of thermodynamics. CRC Press, New York
Khovanskii AG (1983) Fewnomials and Pfaff manifolds. In: Proceedings of the International Congress of Mathematicians. August 16–24, 1983. Warszawa, Polish Scientific Publishers. Vol. 1: 549–564
Young WH (1909) IX.—On the conditions for the reversibility of the order of partial differentiation. Proc R Soc Edinb 29:136–164
Schwarz HA (1873) Archives des sciences physiques et naturelles 48:38–44
Clairaut AC (1740) Sur l'integration ou la construction des equations différentielles du premier ordre. Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique MDCCXL: 293–323
Knuiman JT, Barnefeld PA, Besseling NAM (2012) On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems. J Chem Educ 89(8):969–972
Shell MS (2015) Thermodynamics and statistical mechanics: An integrated approach. In: Cambridge Series in Chemical Engineering. Cambridge University Press
Maxwell JC (1871) Theory of Heat. Longmans, London
Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3(108–248):343–524
Duhem P (1886) Le potentiel thermodynamique et ses applications à la mécanique chimique et à l’étude des phénomènes électriques. Hermann, Paris
Cauchy AL (1823) Résumé des leçons données à l'École royale polytechnique sur le calcul infinitesimal. Paris, De l'Imprimerie Royale
Cauchy AL (1826) Leçons sur les applications du calcul infinitésimal à la géométrie. Paris, De l'Imprimerie Royale
Van Ness HC, Mrazek RV (1959) Treatment of thermodynamic data for homogeneous binary systems. Am Inst Chem Eng J 5(2):209–212
Van Ness HC (1959) Precise testing of binary vapour—liquid equilibrium data by the Gibbs—Duhem equation. Chem Eng Sci 11(2):118–124
Keszei E, Aszodi A, Balazs L, Borosy AP (1990) Extrapolation to infinite dilution using a least-squares estimation. J Chem Educ 67(7):566–568
Reis JCR (1982) Theory of Partial Molar Properties. Defining Isochoric Thermal Capacity and Isentropic Compression at Constant Temperature and Pressure, and Introducing Partial Molar Properties at Constant Temperature and Molar Volume, at Constant Molar Entropy and Pressure, and at Constant Molar Entropy and Molar Volume. J Chem Soc Faraday Trans Mol Chem Phys 78(9):1595–1608
Harned HS, Owen BB (1958) The Physical Chemistry of Electrolytic Solutions. Reinhold Publishing Corporation, New York
Acree WE Jr (1984) Thermodynamic properties of nonelectrolyte solutions, 1st edn. Academic Press, Cambridge
Kehiaian KV (2009) Volumetric properties of mixtures and solutions. subvolume A: Binary liquid systems of nonelectrolytes. Berlin, Springer
Gupta SV (2002) Practical Density Measurements and Hydrology. Institute of Physics Publishing, Bristol and Philadelphia
Clegg SL, Wexler AS (2011) Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C. J Phys Chem A 115(15):3393–3460
Koerver R et al (2018) Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy Environ Sci 11(8):2142–2158
Haghbakhsh R, Raeissi S (2017) Densities and volumetric properties of (choline chloride + urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15–323.15 K. J Chem Thermodyn 124:10–20
Schwarz HJ, Hora H (1974) Laser Interaction and Related Plasma Phenomena, vol 3B. Springer, Boston
Nuckolls J, Wood L, Thiessen A, Zimmerman G (1972) Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239:139–142
Cardemil JM, Colle S (2012) A general model for evaluation of vapor ejectors performance for application in refrigeration. Energy Convers Manage 64:79–86
Chauhan S, Singh R, Sharma K, Kumar K (2016) Interaction study of anionic surfactant with aqueous non-ionic polymers from conductivity, density and speed of sound measurements. J Surfactants Deterg 18(2):225–232
Newton I (1687) Philosophiæ Naturalis Principia Mathematica. London, The Royal Society
Laplace PS (1816) Sur la vitesse du son dans l’air et dans l’eau. Annales de chimie et de physique 3:238–241
Hnědkovský L, Cibulka I (2013) Partial molar volumes and partial molar isentropic compressions of selected alkane-α, ω-diols at Infinite dilution in water at temperatures T = (278 to 318) K and atmospheric pressure. J Chem Eng Data 58(6):1724–1734
Ali A, Bhushan V, Bidhuri P (2013) Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures. J Mol Liq 177:209–214
Hedwig GR, Høiland H (2011) Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J Chem Eng Data 56(5):2266–2272
Gill SJ, Nichols NF, Wadsö I (1976) Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J Chem Thermodynam 8(5):445–452
Campserveux J, Gerdanian P (1974) High-temperature microcalorimetric measurements of the partial molar enthalpy of solution of O2 in cerium oxides: CeO1.5 to CeO2. J Chem Thermodyn 6(8): 795–800
Morishita M, Navrotsky A, Wilding MC (2004) Direct measurement of relative partial molar enthalpy of SiO2 in SiO2–M2O (M=Li, Na, K, Cs) binary and SiO2–CaO–Al2O3 ternary melts. J Am Ceram Soc 87(8):1550–1555
Golovnya RV, Arsenyev YN (1970) Gas chromatographic method for determination of enthalpy of solution from retention indices. Chromatographia 3(10):455–461
Humphrey RS, Hedwig GR, Watson ID, Malcolm GN (1980) The partial molar enthalpies in aqueous solution of some amino acids with polar and non-polar side chains. J Chem Thermodyn 12(6):595–603
Bahe LW (1972) Relative partial molar enthalpies and heats of dilution of electrolytes in water. J Phys Chem 76(11):1608–1611
Kumaran MK, Watson ID, Hedwig GR (1983) Thermodynamic properties of peptide solutions. The relative partial molar enthalpies of aqueous solutions of glycylglycylglycine, glycylglycylalanine and alanylglycylglycine. Austral J Chem 36(9):1813–1820
Hedwig GR, Jameson GB, Høiland H (2011) The partial molar heat capacity, expansion, isentropic, and isothermal compressions of thymidine in aqueous solution at T = 298.15 K. J Chem Thermodyn 43(12):1936–1941
Benson GC, D’Arcy PJ, Kiyohara O (1980) Thermodynamics of aqueous mixtures of nonelectrolytes II. Isobaric heat capacities of water-n-alcohol mixtures at 25°C. J Solut Chem 9(12):931–938
Polikhronidi NG, Abdulagatov IM, Stepanov GV, Batyrova RG (2007) Isochoric heat capacity measurements for H2O + CH3OH mixture in the near-critical and supercritical regions. Fluid Phase Equilib 252(1–2):33–46
Aliev MM, Magee JW, Abdulagatov IM (2003) PVTx and isochoric heat capacity measurements for aqueous methanol solutions. Int J Thermophys 24(6):1551–1579
Baierlein R (2001) The elusive chemical potential. Am J Phys 69(4):423–434
Kittel C (1967) The way of the chemical potential. Am J Phys 35(6):483–487
Job G, Herrmann F (2006) Chemical potential—a quantity in search of recognition. Eur J Phys 27(2):353–371
Anthonysamy S et al (1995) Chemical potential of carbon in the system U—Pu—C—O—N: measurements and calculation. J Nucl Mater 223(1):20–27
Kauranen P, Harwigsson I, Jonsson B (1994) Relative vapor-pressure measurements using a frequency-modulated tunable diode-laser, a tool for water activity determination in solutions. J Phys Chem 98(5):1411–1415
Comments (0)