Partial molar properties

Cengel YA, Boles MA (2008) Thermodynamics: an engineering approach. McGraw-Hill, New York

Google Scholar 

Tolman RC (1917) The measurable quantities of physics. Phys Rev Series II 9(3):237–253

Google Scholar 

McNaught AD, Wilkinson A, Nic M, Jirat J, Kosata B, Jenkins A (2014) IUPAC Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Version. 2.3.3. Oxford, Blackwell Scientific Publications

Canagaratha SG (1992) Intensive and extensive: underused concepts. J Chem Educ 69(12):957–963

Google Scholar 

Redlich O (1970) Intensive and extensive properties. J Chem Educ 47(2):154–156

CAS  Google Scholar 

Euler L (1755) Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. Ticini, in typographeo Petri Galeatii

Philip WE (1900) A slight extension of Euler’s Theorem on Homogeneous Functions. Proc Edinb Math Soc 18:101–102

Google Scholar 

Keszei E (2012) Chemical Thermodynamics: An Introduction. Springer Science & Business Media, Berlin

Google Scholar 

Alberty RA (2001) Use of Legendre transforms in chemical thermodynamics. Pure Appl Chem 73(8):1349–1380

CAS  Google Scholar 

Gibbs JW (1873) Graphical methods in the thermodynamics of fluids. Trans Connecticut Acad Arts Sci 2:309–342

Google Scholar 

Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Trans Acad Arts Sci 43:259–293

Google Scholar 

Lewis GN (1907) Umriß eines neuen Systems der chemischen Thermodynamik. Zeitschrift für Physikalische Chemie Stochiometrie und Verwandtschaftslehre 61(2):129–165

Google Scholar 

Salzman WR (2011) Physical chemistry. Available at https://www.passeidireto.com/arquivo/3793575/salzman-fisico-quimica (Access date – 22. 09. 2021)

Ceder G, Van der Ven A (2003) Materials at equilibrium (SMA 5111). Massachusetts Institute of Technology. Available at https://ocw.mit.edu/courses/materials-science-and-engineering/3-20-materials-at-equilibrium-sma-5111-fall-2003 (Access date – 22. 09. 2021)

Gmehling J, Kolbe B, Kleiber M, Rarey J (2012) Chemical Thermodynamics for Process Simulation. John Wiley & Sons

Google Scholar 

de Nevers N (2012) Physical and Chemical Equilibrium for Chemical Engineers. John Wiley & Sons

Google Scholar 

Malijevský A, Novák JP, Labík S, Malijevská I (2000) Breviář fyzikální chemie. Praha

DeVoe H (2016) Thermodynamics and Chemistry. 2nd Edition. Version 10. Available at http://www2.chem.umd.edu/thermobook/v10-screen.pdf (Access date – 22. 09. 2021)

Blandamer MJ, Reis JCR (2004) A notebook for topics in thermodynamics of solutions and liquid mixtures. University of Leicester. Available at http://www.le.ac.uk/chemistry/thermodynamics (Access date – 22. 09. 2021)

Narayanan KV (2013) A textbook on chemical engineering thermodynamics. PHI Learning Pvt. Ltd

Athavale VD (2007) Experimental physical chemistry. New Age International

Walas SM (1985) Phase Equilibrium in Chemical Engineering. Butterworth Publishers, Boston

Google Scholar 

Atkins P, de Paula J (2010) Atkins’ Physical Chemistry. OUP, Oxford

Google Scholar 

Atkins P, de Paula J (2013) Elements of Physical Chemistry. OUP, Oxford

Google Scholar 

Dogra S (1984) Physical Chemistry Through Problems. New Age International

Garland C, Nibler J, Shoemaker D (2003) Experiments in Physical Chemistry, 7th Edition. McGraw-Hill Publishing

Tyagi P (2006) Thermochemistry. Discovery Publishing House

Raj G (2009) Advanced Physical Chemistry. 35th Edition. Ed. Chatwal M. Krishna Prakashan Media

Singh NB, Das SS, Singh AK (2009) Physical Chemistry. Volume 2. New Age International

Satake M, Nagahiro T (1990) Modern dictionary: physical chemistry. Discovery Publishing House

Laptev DM (1992) Termodinamika metallurgičeskih rastvorov. Chelyabinsk, Metallurgiâ

Google Scholar 

Pfaff JF (1814–1815) Methodes generalis aequationes differentiarum partialium, nec non aequationes differentiales vulgares, ultrasque primis ordinis, inter quotcunque variabiles, complete integrandi. Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin. Mathematische Klasse 76–135

Cartan É (1899) Sur certaines expressions différentielles et le problème de Pfaff. Annales scientifiques de l’École Normale Supérieure. Troisième série 16:239–332

Google Scholar 

Carathéodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Ann 67(3):355–386

Google Scholar 

Flanders H (1963) Differential Forms with Applications to the Physical Sciences. Academic Press, New York

Google Scholar 

Sychev VV (1991) The differential equations of thermodynamics. CRC Press, New York

Google Scholar 

Khovanskii AG (1983) Fewnomials and Pfaff manifolds. In: Proceedings of the International Congress of Mathematicians. August 16–24, 1983. Warszawa, Polish Scientific Publishers. Vol. 1: 549–564

Young WH (1909) IX.—On the conditions for the reversibility of the order of partial differentiation. Proc R Soc Edinb 29:136–164

Google Scholar 

Schwarz HA (1873) Archives des sciences physiques et naturelles 48:38–44

Google Scholar 

Clairaut AC (1740) Sur l'integration ou la construction des equations différentielles du premier ordre. Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique MDCCXL: 293–323

Knuiman JT, Barnefeld PA, Besseling NAM (2012) On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems. J Chem Educ 89(8):969–972

Google Scholar 

Shell MS (2015) Thermodynamics and statistical mechanics: An integrated approach. In: Cambridge Series in Chemical Engineering. Cambridge University Press

Maxwell JC (1871) Theory of Heat. Longmans, London

Google Scholar 

Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3(108–248):343–524

Google Scholar 

Duhem P (1886) Le potentiel thermodynamique et ses applications à la mécanique chimique et à l’étude des phénomènes électriques. Hermann, Paris

Google Scholar 

Cauchy AL (1823) Résumé des leçons données à l'École royale polytechnique sur le calcul infinitesimal. Paris, De l'Imprimerie Royale

Cauchy AL (1826) Leçons sur les applications du calcul infinitésimal à la géométrie. Paris, De l'Imprimerie Royale

Van Ness HC, Mrazek RV (1959) Treatment of thermodynamic data for homogeneous binary systems. Am Inst Chem Eng J 5(2):209–212

CAS  Google Scholar 

Van Ness HC (1959) Precise testing of binary vapour—liquid equilibrium data by the Gibbs—Duhem equation. Chem Eng Sci 11(2):118–124

Google Scholar 

Keszei E, Aszodi A, Balazs L, Borosy AP (1990) Extrapolation to infinite dilution using a least-squares estimation. J Chem Educ 67(7):566–568

CAS  Google Scholar 

Reis JCR (1982) Theory of Partial Molar Properties. Defining Isochoric Thermal Capacity and Isentropic Compression at Constant Temperature and Pressure, and Introducing Partial Molar Properties at Constant Temperature and Molar Volume, at Constant Molar Entropy and Pressure, and at Constant Molar Entropy and Molar Volume. J Chem Soc Faraday Trans Mol Chem Phys 78(9):1595–1608

CAS  Google Scholar 

Harned HS, Owen BB (1958) The Physical Chemistry of Electrolytic Solutions. Reinhold Publishing Corporation, New York

Google Scholar 

Acree WE Jr (1984) Thermodynamic properties of nonelectrolyte solutions, 1st edn. Academic Press, Cambridge

Google Scholar 

Kehiaian KV (2009) Volumetric properties of mixtures and solutions. subvolume A: Binary liquid systems of nonelectrolytes. Berlin, Springer

Gupta SV (2002) Practical Density Measurements and Hydrology. Institute of Physics Publishing, Bristol and Philadelphia

Google Scholar 

Clegg SL, Wexler AS (2011) Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C. J Phys Chem A 115(15):3393–3460

CAS  PubMed  Google Scholar 

Koerver R et al (2018) Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy Environ Sci 11(8):2142–2158

CAS  Google Scholar 

Haghbakhsh R, Raeissi S (2017) Densities and volumetric properties of (choline chloride + urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15–323.15 K. J Chem Thermodyn 124:10–20

Google Scholar 

Schwarz HJ, Hora H (1974) Laser Interaction and Related Plasma Phenomena, vol 3B. Springer, Boston

Google Scholar 

Nuckolls J, Wood L, Thiessen A, Zimmerman G (1972) Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239:139–142

CAS  Google Scholar 

Cardemil JM, Colle S (2012) A general model for evaluation of vapor ejectors performance for application in refrigeration. Energy Convers Manage 64:79–86

CAS  Google Scholar 

Chauhan S, Singh R, Sharma K, Kumar K (2016) Interaction study of anionic surfactant with aqueous non-ionic polymers from conductivity, density and speed of sound measurements. J Surfactants Deterg 18(2):225–232

Google Scholar 

Newton I (1687) Philosophiæ Naturalis Principia Mathematica. London, The Royal Society

Laplace PS (1816) Sur la vitesse du son dans l’air et dans l’eau. Annales de chimie et de physique 3:238–241

Google Scholar 

Hnědkovský L, Cibulka I (2013) Partial molar volumes and partial molar isentropic compressions of selected alkane-α, ω-diols at Infinite dilution in water at temperatures T = (278 to 318) K and atmospheric pressure. J Chem Eng Data 58(6):1724–1734

Google Scholar 

Ali A, Bhushan V, Bidhuri P (2013) Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures. J Mol Liq 177:209–214

CAS  Google Scholar 

Hedwig GR, Høiland H (2011) Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J Chem Eng Data 56(5):2266–2272

CAS  Google Scholar 

Gill SJ, Nichols NF, Wadsö I (1976) Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J Chem Thermodynam 8(5):445–452

CAS  Google Scholar 

Campserveux J, Gerdanian P (1974) High-temperature microcalorimetric measurements of the partial molar enthalpy of solution of O2 in cerium oxides: CeO1.5 to CeO2. J Chem Thermodyn 6(8): 795–800

Morishita M, Navrotsky A, Wilding MC (2004) Direct measurement of relative partial molar enthalpy of SiO2 in SiO2–M2O (M=Li, Na, K, Cs) binary and SiO2–CaO–Al2O3 ternary melts. J Am Ceram Soc 87(8):1550–1555

CAS  Google Scholar 

Golovnya RV, Arsenyev YN (1970) Gas chromatographic method for determination of enthalpy of solution from retention indices. Chromatographia 3(10):455–461

CAS  Google Scholar 

Humphrey RS, Hedwig GR, Watson ID, Malcolm GN (1980) The partial molar enthalpies in aqueous solution of some amino acids with polar and non-polar side chains. J Chem Thermodyn 12(6):595–603

CAS  Google Scholar 

Bahe LW (1972) Relative partial molar enthalpies and heats of dilution of electrolytes in water. J Phys Chem 76(11):1608–1611

CAS  Google Scholar 

Kumaran MK, Watson ID, Hedwig GR (1983) Thermodynamic properties of peptide solutions. The relative partial molar enthalpies of aqueous solutions of glycylglycylglycine, glycylglycylalanine and alanylglycylglycine. Austral J Chem 36(9):1813–1820

CAS  Google Scholar 

Hedwig GR, Jameson GB, Høiland H (2011) The partial molar heat capacity, expansion, isentropic, and isothermal compressions of thymidine in aqueous solution at T = 298.15 K. J Chem Thermodyn 43(12):1936–1941

CAS  Google Scholar 

Benson GC, D’Arcy PJ, Kiyohara O (1980) Thermodynamics of aqueous mixtures of nonelectrolytes II. Isobaric heat capacities of water-n-alcohol mixtures at 25°C. J Solut Chem 9(12):931–938

CAS  Google Scholar 

Polikhronidi NG, Abdulagatov IM, Stepanov GV, Batyrova RG (2007) Isochoric heat capacity measurements for H2O + CH3OH mixture in the near-critical and supercritical regions. Fluid Phase Equilib 252(1–2):33–46

CAS  Google Scholar 

Aliev MM, Magee JW, Abdulagatov IM (2003) PVTx and isochoric heat capacity measurements for aqueous methanol solutions. Int J Thermophys 24(6):1551–1579

CAS  Google Scholar 

Baierlein R (2001) The elusive chemical potential. Am J Phys 69(4):423–434

CAS  Google Scholar 

Kittel C (1967) The way of the chemical potential. Am J Phys 35(6):483–487

CAS  Google Scholar 

Job G, Herrmann F (2006) Chemical potential—a quantity in search of recognition. Eur J Phys 27(2):353–371

CAS  Google Scholar 

Anthonysamy S et al (1995) Chemical potential of carbon in the system U—Pu—C—O—N: measurements and calculation. J Nucl Mater 223(1):20–27

CAS  Google Scholar 

Kauranen P, Harwigsson I, Jonsson B (1994) Relative vapor-pressure measurements using a frequency-modulated tunable diode-laser, a tool for water activity determination in solutions. J Phys Chem 98(5):1411–1415

CAS 

Comments (0)

No login
gif