Predicting treatment outcomes using 18F-FDG PET biomarkers in patients with non-small-cell lung cancer receiving chemoimmunotherapy

1. Herbst, RS, Morgensztern, D, Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018; 553: 446–454.
Google Scholar | Crossref | Medline2. Wei, SC, Duffy, CR, Allison, JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018; 8: 1069–1086.
Google Scholar | Crossref | Medline3. Ribas, A, Wolchok, JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350–1355.
Google Scholar | Crossref | Medline4. Garon, EB, Rizvi, NA, Hui, R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372: 2018–2028.
Google Scholar | Crossref | Medline | ISI5. Reck, M, Rodríguez-Abreu, D, Robinson, AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–1833.
Google Scholar | Crossref | Medline | ISI6. Paz-Ares, L, Luft, A, Vicente, D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018; 379: 2040–2051.
Google Scholar | Crossref | Medline7. Hellmann, MD, Paz-Ares, L, Bernabe Caro, R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019; 381: 2020–2031.
Google Scholar | Crossref | Medline8. Brahmer, J, Reckamp, KL, Baas, P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New Engl J Med 2015; 373: 123–135.
Google Scholar | Crossref | Medline | ISI9. Borghaei, H, Paz-Ares, L, Horn, L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373: 1627–1639.
Google Scholar | Crossref | Medline | ISI10. Gandhi, L, Rodríguez-Abreu, D, Gadgeel, S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018; 378: 2078–2092.
Google Scholar | Crossref | Medline11. Lim, SM, Hong, MH, Kim, HR. Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. Immune Netw 2020; 20: e10.
Google Scholar | Crossref12. Yu, H, Boyle, TA, Zhou, C, et al. PD-L1 expression in lung cancer. J Thorac Oncol 2016; 11: 964–975.
Google Scholar | Crossref | Medline13. Rizvi, H, Sanchez-Vega, F, La, K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 2018; 36: 633–641.
Google Scholar | Crossref | Medline14. Sun, R, Limkin, EJ, Vakalopoulou, M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19: 1180–1191.
Google Scholar | Crossref | Medline15. Rizvi, NA, Hellmann, MD, Snyder, A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348: 124–128.
Google Scholar | Crossref | Medline | ISI16. Hugo, W, Zaretsky, JM, Sun, L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016; 165: 35–44.
Google Scholar | Crossref | Medline | ISI17. Chowell, D, Morris, LGT, Grigg, CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018; 359: 582–587.
Google Scholar | Crossref | Medline18. Sacher, AG, Gandhi, L. Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol 2016; 2: 1217–1222.
Google Scholar | Crossref | Medline | ISI19. Mok, TSK, Wu, YL, Kudaba, I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019; 393: 1819–1830.
Google Scholar | Crossref | Medline20. Reck, M, Rodríguez-Abreu, D, Robinson, AG, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 2019; 37: 537–546.
Google Scholar | Crossref | Medline21. Carbone, DP, Reck, M, Paz-Ares, L, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017; 376: 2415–2426.
Google Scholar | Crossref | Medline | ISI22. Aide, N, Hicks, RJ, Le Tourneau, C, et al. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging 2019; 46: 238–250.
Google Scholar | Crossref | Medline23. Mu, W, Tunali, I, Gray, JE, et al. Radiomics of (18)F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging 2020; 47: 1168–1182.
Google Scholar | Crossref | Medline24. Seban, RD, Mezquita, L, Berenbaum, A, et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur J Nucl Med Mol Imaging 2020; 47: 1147–1157.
Google Scholar | Crossref | Medline25. Sharma, A, Mohan, A, Bhalla, AS, et al. Role of various metabolic parameters derived from baseline 18F-FDG PET/CT as prognostic markers in non-small cell lung cancer patients undergoing platinum-based chemotherapy. Clin Nucl Med 2018; 43: e8–e17.
Google Scholar | Crossref26. Usmanij, EA, Natroshvili, T, Timmer-Bonte, JNH, et al. The predictive value of early in-treatment (18)F-FDG PET/CT response to chemotherapy in combination with bevacizumab in advanced nonsquamous non-small cell lung cancer. J Nucl Med 2017; 58: 1243–1248.
Google Scholar | Crossref | Medline27. Lee, JW, Seo, KH, Kim, ES, et al. The role of (18)F-fluorodeoxyglucose uptake of bone marrow on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with chemoradiotherapy. Eur Radiol 2017; 27: 1912–1921.
Google Scholar | Crossref | Medline28. Seban, RD, Rouzier, R, Latouche, A, et al. Total metabolic tumor volume and spleen metabolism on baseline [18F]-FDG PET/CT as independent prognostic biomarkers of recurrence in resected breast cancer. Eur J Nucl Med Mol Imaging 2021; 48: 3560–3570.
Google Scholar | Crossref | Medline29. Seban, RD, Robert, C, Dercle, L, et al. Increased bone marrow SUVmax on 18F-FDG PET is associated with higher pelvic treatment failure in patients with cervical cancer treated by chemoradiotherapy and brachytherapy. Oncoimmunology 2019; 8: e1574197.
Google Scholar | Crossref | Medline30. Lee, JW, Choi, JS, Lyu, J, et al. Prognostic significance of (18)F-fluorodeoxyglucose uptake of bone marrow measured on positron emission tomography in patients with small cell lung cancer. Lung Cancer 2018; 118: 41–47.
Google Scholar | Crossref | Medline31. Greten, FR, Grivennikov, SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 2019; 51: 27–41.
Google Scholar | Crossref | Medline32. Im, HJ, Pak, K, Cheon, GJ, et al. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 2015; 42: 241–251.
Google Scholar | Crossref | Medline33. Boellaard, R, Delgado-Bolton, R, Oyen, WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328–354.
Google Scholar | Crossref | Medline34. Lee, JW, Kim, SY, Han, SW, et al. [(18)F]FDG uptake of bone marrow on PET/CT for predicting distant recurrence in breast cancer patients after surgical resection. EJNMMI Res 2020; 10: 72.
Google Scholar | Crossref | Medline35. Ahn, SS, Hwang, SH, Jung, SM, et al. Evaluation of spleen glucose metabolism using (18)F-FDG PET/CT in patients with febrile autoimmune disease. J Nucl Med 2017; 58: 507–513.
Google Scholar | Crossref | Medline36. Eisenhauer, EA, Therasse, P, Bogaerts, J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228–247.
Google Scholar | Crossref | Medline | ISI37. Bigot, F, Castanon, E, Baldini, C, et al. Prospective validation of a prognostic score for patients in immunotherapy phase I trials: the Gustave Roussy Immune Score (GRIm-Score). Eur J Cancer 2017; 84: 212–218.
Google Scholar | Crossref | Medline38. Arkenau, HT, Barriuso, J, Olmos, D, et al. Prospective validation of a prognostic score to improve patient selection for oncology phase I trials. J Clin Oncol 2009; 27: 2692–2696.
Google Scholar | Crossref | Medline | ISI39. Garrido-Laguna, I, Janku, F, Vaklavas, C, et al. Validation of the Royal Marsden Hospital prognostic score in patients treated in the phase I Clinical Trials Program at the MD Anderson Cancer Center. Cancer 2012; 118: 1422–1428.
Google Scholar | Crossref | Medline | ISI40. Ettinger, DS, Wood, DE, Aisner, DL, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw 2021; 19: 254–266.
Google Scholar | Crossref | Medline41. Wu, YL, Planchard, D, Lu, S, et al. Pan-Asian adapted clinical practice guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol 2019; 30: 171–210.
Google Scholar | Crossref | Medline42. Dall’Olio, FG, Calabrò, D, Conci, N, et al. Baseline total metabolic tumour volume on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography-computed tomography as a promising biomarker in patients with advanced non-small cell lung cancer treated with first-line pembrolizumab. Eur J Cancer 2021; 150: 99–107.
Google Scholar | Crossref | Medline43. Castello, A, Rossi, S, Mazziotti, E, et al. Hyperprogressive disease in patients with non-small cell lung cancer treated with checkpoint inhibitors: the role of (18)F-FDG PET/CT. J Nucl Med 2020; 61: 821–826.
Google Scholar | Crossref | Medline44. Burger, IA, Casanova, R, Steiger, S, et al. 18F-FDG PET/CT of non-small cell lung carcinoma under neoadjuvant chemotherapy: background-based adaptive-volume metrics outperform TLG and MTV in predicting histopathologic response. J Nucl Med 2016; 57: 849–854.
Google Scholar | Crossref | Medline45. Sun, X, Xiao, Z, Chen, G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med 2018; 10: eaan8840.
Google Scholar | Crossref46. Luan, X, Huang, Y, Gao, S, et al. (18)F-alfatide PET/CT may predict short-term outcome of concurrent chemoradiotherapy in patients with advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2016; 43: 2336–2342.
Google Scholar | Crossref | Medline47. Mattonen, SA, Davidzon, GA, Benson, J, et al. Bone marrow and tumor radiomics at (18)F-FDG PET/CT: impact on outcome prediction in non-small cell lung cancer. Radiology 2019; 293: 451–459.

Comments (0)

No login
gif