1. Faurschou, M, Starklint, H, Halberg, P, et al. Prognostic factors in lupus nephritis diagnostic and therapeutic delay increases the risk of terminal renal failure.J Rheumatol 2006; 33:1563–1569.
Google Scholar |
Medline |
ISI2. Paydas, S, Balal, M, Tanrıverdi, K, et al. The relationship between mRNA expression and clinical course indifferent glomerulonephritis.Rheumatology 2007; 29:779–784.
Google Scholar3. Esposito, S, Bosis, S, Semino, M, et al. Infectionsand systemic lupuserythematosus. Eur J of Clinical Microbiol Infect Dis 2014; 33:1467–1475.
Google Scholar |
Crossref |
Medline4. Oliveto, S, Mancino, M, Manfrini, N, et al. dnslation regulation and cancer.World J Biol Chem 2017; 8:45.
Google Scholar |
Crossref |
Medline5. Shaffi, S, Galas, D, Etheridge, A, et al. MicroRNAs in renal parenchymal diseases.Int J Mol Sci 2018; 19:1797.
Google Scholar |
Crossref6. Friedländer, MR, Lizano, E, Houben, AJS, et al. Evidence for the biogenesis of more than 1000 novel human microRNAs. Genome Biol 2014; 3:15–57.
Google Scholar7. Rinn, JL, Chang, HY .Genome regulation by long noncoding RNAs.Annu Rev Biochem 2012; 66:45–81.
Google Scholar8. Guttman, M, Russell, P, Ingolia, NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. CellBio 2013; 154:240–251.
Google Scholar |
Crossref9. Yoon, JH, Abdel Mohsen, K, Srikantan, S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cel 2012; 47:648–655.
Google Scholar |
Crossref |
Medline10. Petri, M . Review of classification criteria for systemic lupus erythematosus. Rheum Dis Clin 2005; 31:245–254.
Google Scholar |
Crossref |
Medline |
ISI11. Griffiths, B, Mosca, M, Gordon, C Assessmentofpatients with systemic lupus erythematosus and the use oflupus disease activity indices. Clin Rheumatol 2005; 19:685–708.
Google Scholar12. Wenbiao, C, Kuibi, T, Jianrong, H, et al. Analysis of microRNAs in patients with systemic lupus erythematosus, using deepsequencing.Connect Tissue Res 2014; 55:187–196.
Google Scholar |
Crossref |
Medline13. Ye, H, Su, B, Ni, H, et al. MicroRNA-132 may be involved in the pathogenesisof lupus nephritis via modulating the activation ofNF-κB by targeting Klotho. MolecularImmunology 2018; 103:235–242.
Google Scholar14. Orbai, AM, Petri, M, Alarcon, GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. ArthritisRheum 2014; 64:2677–2686.
Google Scholar15. Kakumanu, P, Sobel, ES, Narain, S, et al. Citrulline dependence of anticyclic citrullinated peptide antibodies in systemic lupus erythematosus. J Rheumatol 2009; 36:2682–2690.
Google Scholar |
Crossref |
Medline |
ISI16. Ben-Menachem, E . Systemic lupus erythematosus a review for anesthesiologists.AnesthAnalog 2011; 111:665–676
Google Scholar17. Nowlign, TK, Gilkeson, GS. Mechanisms of tissue injury in lupus nephritis. Arthritis Res Ther 2011; 13:250.
Google Scholar |
Crossref |
Medline18. Fu, Sung, Wang, Gaskin. Pathogenesis lupus Nephritis, Related Syndromes 2019; 12:269–293.
Google Scholar19. Baumjohann, D, Ansel, KM.MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013; 13:666–678.
Google Scholar |
Crossref |
Medline20. Navarro-Quiro, E, Pacheco-Lugo, L, Lorenzi, H, et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. Autoimmune Dis 2017; 12:11.
Google Scholar21. Zhao, S, Wang, Y, Liang, M, et al. MicroRNA regulates DNA methylation in CD4(+) T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 2011; 63: 1376.
Google Scholar |
Crossref |
Medline22. Honarpisheh, M, Köhler, P, von Rauchhaupt, E, et al. The involvement of microRNAs in modulation of innate and adaptive immunity in systemic lupus erythematosus and lupus nephritis. J Immunol Res 2018; 12:81.
Google Scholar23. Abdul-Maksoud, R, Sediq, A, Kattaia, A, et al. Serum miR-132 and miR-155 expression levels as novel biomarkers for rheumatoid arthritis diagnosis. Biomed Sci2017; 74:209.
Google Scholar24. Li, PY, Wang, P, Gao, SG, et al. Long Non coding RNA SOX2-OT: Regulations, Functions, and Roles on Mental Illnesses, Cancers, and Diabetic Complications. Biomed Res Int; 10:107.
Google Scholar25. Brabletz, T, Kalluri, R, Nieto, MA, et al. Long noncoding RNA Sox2 overlapping transcript (SOX2) promotes non-small-cell lung cancer migration and invasion via sponging microRNA 132 (miR-132). Nat Rev Cancer. 2018; 18:128.
Google Scholar |
Crossref |
Medline26. Van Heesch, S, Van Iterson, M, Jacobi, J, et al. Extensive localization of long noncoding RNAs to the cytosol and polyribosomal complexes. Genome Biol 2014; 15:6.
Google Scholar |
Crossref27. Brightbill, HD, Suto, E, Blaquiere, N. NF-κ Binding kinase is a therapeutic target for systemic lupus erythematosus. Nat Commun 2018; 9:179.
Google Scholar |
Crossref |
Medline28. Guo, H, Zhang, X, Chen, Q, et al. miR-132 suppresses the migration and invasion of lung cancer cells by blocking USP9X-induced epithelial-mesenchymal transition. Am J Transl Res. 2018;10:224.
Google Scholar |
Medline
Comments (0)