Role of the Hematopoietic Stem Cells in Immunological Memory

1.∙

Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe. 2019;25(1):13–26. https://doi.org/10.1016/j.chom.2018.12.006. Perspective article integrating adaptive and innate immune memory in an evolutionary framework.

CAS  Article  PubMed  Google Scholar 

2.

Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S33-40. https://doi.org/10.1016/j.jaci.2009.09.017.

Article  PubMed  Google Scholar 

3.

Imkeller K, Wardemann H. Assessing human B cell repertoire diversity and convergence. Immunol Rev. 2018;284(1):51–66. https://doi.org/10.1111/imr.12670.

CAS  Article  PubMed  Google Scholar 

4.

Laydon DJ, Bangham CR, Asquith B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci. 2015;370(1675). https://doi.org/10.1098/rstb.2014.0291.

5.

Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 2017;133:37–87. https://doi.org/10.1016/bs.ai.2016.11.002.

CAS  Article  PubMed  Google Scholar 

6.

Jameson SC, Masopust D. Understanding Subset Diversity in T Cell Memory. Immunity. 2018;48(2):214–26. https://doi.org/10.1016/j.immuni.2018.02.010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

7.

Fearon DT, Manders P, Wagner SD. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science. 2001;293(5528):248–50. https://doi.org/10.1126/science.1062589.

CAS  Article  PubMed  Google Scholar 

8.

Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671–84. https://doi.org/10.1038/nrc3322.

CAS  Article  PubMed  PubMed Central  Google Scholar 

9.

Ciocca ML, Barnett BE, Burkhardt JK, Chang JT, Reiner SL. Cutting edge: asymmetric memory T cell division in response to rechallenge. J Immunol. 2012;188(9):4145–8. https://doi.org/10.4049/jimmunol.1200176.

CAS  Article  PubMed  Google Scholar 

10.

Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103(9):3304–9. https://doi.org/10.1073/pnas.0511137103.

CAS  Article  PubMed  PubMed Central  Google Scholar 

11.

Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH. Stem cell-like plasticity of naïve and distinct memory CD8+ T cell subsets. Semin Immunol. 2009;21(2):62–8. https://doi.org/10.1016/j.smim.2009.02.004.

CAS  Article  PubMed  Google Scholar 

12.

Takamura S. Niches for the long-term maintenance of tissue-resident memory T cells. Front Immunol. 2018;9:1214. https://doi.org/10.3389/fimmu.2018.01214.

CAS  Article  PubMed  PubMed Central  Google Scholar 

13.

Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol. 2021;51(7):1592–601. https://doi.org/10.1002/eji.202049012.

CAS  Article  PubMed  Google Scholar 

14.

Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S, et al. Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol. 2011;186(12):6965–71. https://doi.org/10.4049/jimmunol.1100243.

CAS  Article  PubMed  Google Scholar 

15.

Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grün JR, Löhning M, et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity. 2009;30(5):721–30. https://doi.org/10.1016/j.immuni.2009.03.015.

CAS  Article  PubMed  Google Scholar 

16.

Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–63. https://doi.org/10.1146/annurev-arplant-042811-105606.

CAS  Article  PubMed  PubMed Central  Google Scholar 

17.

Melillo D, Marino R, Italiani P, Boraschi D. Innate immune memory in invertebrate metazoans: a critical appraisal. Front Immunol. 2018;9:1915. https://doi.org/10.3389/fimmu.2018.01915.

CAS  Article  PubMed  PubMed Central  Google Scholar 

18.

O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol. 2006;7(5):507–16. https://doi.org/10.1038/ni1332.

CAS  Article  PubMed  Google Scholar 

19.

Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457(7229):557–61. https://doi.org/10.1038/nature07665.

CAS  Article  PubMed  PubMed Central  Google Scholar 

20.

Brillantes M, Beaulieu AM. Memory and memory-like NK cell responses to microbial pathogens. Front Cell Infect Microbiol. 2020;10:102. https://doi.org/10.3389/fcimb.2020.00102.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

Pahl JHW, Cerwenka A, Ni J. Memory-Like NK Cells: Remembering a previous activation by cytokines and NK cell receptors. Front Immunol. 2018;9:2796. https://doi.org/10.3389/fimmu.2018.02796.

CAS  Article  PubMed  PubMed Central  Google Scholar 

22.

Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A. 2009;106(6):1915–9. https://doi.org/10.1073/pnas.0813192106.

Article  PubMed  PubMed Central  Google Scholar 

23.

von Andrian UH. NK cell memory: discovery of a mystery. Nat Immunol. 2021;22(6):669–71. https://doi.org/10.1038/s41590-021-00890-9.

CAS  Article  Google Scholar 

24.

Geary CD, Sun JC. Memory responses of natural killer cells. Semin Immunol. 2017;31:11–9. https://doi.org/10.1016/j.smim.2017.08.012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

25.

Adams NM, Lau CM, Fan X, Rapp M, Geary CD, Weizman OE, et al. Transcription factor IRF8 prchestrates the adaptive natural killer cell response. Immunity. 2018;48(6):1172-82.e6. https://doi.org/10.1016/j.immuni.2018.04.018.

CAS  Article  PubMed  PubMed Central  Google Scholar 

26.

Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol. 2015;194(4):1954–62. https://doi.org/10.4049/jimmunol.1402099.

CAS  Article  PubMed  Google Scholar 

27.

Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015;42(3):443–56. https://doi.org/10.1016/j.immuni.2015.02.008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

28.

Berg RE, Crossley E, Murray S, Forman J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J Exp Med. 2003;198(10):1583–93. https://doi.org/10.1084/jem.20031051.

CAS  Article  PubMed  PubMed Central  Google Scholar 

29.

Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y, Curtis JD et al. Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med. 2010;16(5):558–64, 1p following 64. https://doi.org/10.1038/nm.2142.

30.

Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8. https://doi.org/10.1038/nature05836.

CAS  Article  PubMed  Google Scholar 

31.

Maitra U, Deng H, Glaros T, Baker B, Capelluto DG, Li Z, et al. Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol. 2012;189(2):1014–23. https://doi.org/10.4049/jimmunol.1200857.

CAS  Article  PubMed  Google Scholar 

32.

Deng H, Maitra U, Morris M, Li L. Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem. 2013;288(6):3897–906. https://doi.org/10.1074/jbc.M112.424390.

CAS  Article  PubMed  Google Scholar 

33.∙∙

Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345(6204):1251086. https://doi.org/10.1126/science.1251086. Documents epigenetic mechanisms underlying the monocyte-to-macrophage differentiation and the establishment of an immune memory in these cells.

CAS  Article  PubMed  PubMed Central  Google Scholar 

34.∙

Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109(43):17537–42. https://doi.org/10.1073/pnas.1202870109. Provides evidence that Bacillus Calmette–Guérin (BCG) vaccination in humans induces long lasting phenotypic and functional alterations of circulating monocytes.

Article  PubMed  PubMed Central  Google Scholar 

35.

Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–32. https://doi.org/10.1016/j.chom.2012.06.006.

CAS  Article  PubMed  Google Scholar 

36.∙∙

Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355–61. https://doi.org/10.1016/j.chom.2011.04.006. Review article that articulates the concept of innate immune memory and introduces the term of trained immunity.

CAS  Article  PubMed  Google Scholar 

37.

Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, et al. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol. 2015;16(10):1034–43. https://doi.org/10.1038/ni.3257.

CAS  Article 

留言 (0)

沒有登入
gif