1. McLean, E, Cogswell, M, Egli, I, et al. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993‒2005. Public Health Nutr 2009 Apr; 12(4): 444–54.
Google Scholar |
Crossref |
Medline2. Abbasi, MM, Kashiyarndi, S. Clinical Decision Support Systems: A discussion on different methodologies used in Health Care. Marlaedalen University Sweden, 2006.
Google Scholar3. Chen, C, Chen, K, Hsu, CY, et al. Developing guideline-based decision support systems using protégé and jess. Comput Methods Programs Biomed 2011 Jun 1; 102(3): 288–294.
Google Scholar |
Crossref |
Medline4. Khalili, A, Sedaghati, B. Semantic medical prescriptions -- towards intelligent and interoperable medical prescriptions. In: IEEE Seventh International Conference on Semantic Computing. IEEE, 2013, pp. 347–354. DOI:
10.1109/ICSC.2013.66.
Google Scholar |
Crossref5. Yao, W, Kumar, A. CONFlexFlow: integrating flexible clinical pathways into clinical decision support systems using context and rules. Decis Support Syst 2013 May 1; 55(2): 499–515.
Google Scholar |
Crossref6. Thangaraj, M, Gnanambal, S. A rule based decision support system for aiding vitamin d deficiency management. Indian J Sci Technol 2014 Jan; 7(1): 48–52.
Google Scholar7. Chen, RC, Huang, YH, Bau, CT, et al. A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection. Expert Syst Appl 2012 Mar 1; 39(4): 3995–4006.
Google Scholar |
Crossref8. Alharbi, RF, Berri, J, El-Masri, S. Ontology based clinical decision support system for diabetes diagnostic. In: 2015 Science and Information Conference (SAI). IEEE; 2015 Jul 28, pp. 597–602.
Google Scholar9. Camaschella, C . Iron-deficiency anemia. New Engl J Med 2015 May 7; 372(19): 1832–1843.
Google Scholar |
Crossref |
Medline10. Miller, JL . Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med 2013 Jul 1; 3(7): a011866.
Google Scholar |
Crossref |
Medline11. Abebe Dename, M, Mengistu, AD. Ontology based decision support model to diagnoses anemia in children. Int J Adv Stud Comput Sci Eng 2017; 6(6): 22.
Google Scholar12. WebMed . “Iron”, WebMed Medicine Journal [Online]. WebMed. Available:
www.webmd.com/vitamins/ai/ingredientmono-912/iron (Accessed May 2020).
Google Scholar13. Horrocks, I, Patel-Schneider, PF, Boley, H, et al. SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 2004 May 21; 21(79): 1–31.
Google Scholar14. Grosan, C, Abraham, A. Rule-based expert systems. In: Intelligent Systems. Berlin, Heidelberg: Springer; 2011, pp. 149–185.
Google Scholar |
Crossref15. Lee, T, Wu, C, Wei, H. KBSLUA: a knowledge-based system applied in river land use assessment. Expert Syst Appl 2008 Feb 1; 34(2): 889–899.
Google Scholar |
Crossref16. Berners-Lee, T, Hendler, J, Lassila, O. The semantic web. Scientific Am 2001 May 1; 284(5): 34–43.
Google Scholar |
Crossref |
Medline17. Gruber, T . Ontology. Encyclopedia of database systems. Humanistic Al, 2008. Available:
http://tomgruber.org/writing/ontology-definition-2007.htm (Accessed 13 Jan 2021).
Google Scholar18. Lassila, O . Resource description framework (RDF) model and syntax specification. W3C Recommend, 1999.
http://www.w3.org/TR/PR-rdf-syntax.
Google Scholar19. McGuinness, DL, Van Harmelen, F. OWL web ontology language overview. W3C Recommendation 2004 Feb 10; 10(10): 2004.
Google Scholar20. Liang, TP . Recommendation systems for decision support: an editorial introduction. Decis Support Syst 2008; 45(3): 385–386.
Google Scholar |
Crossref21. Woo, JI, Yang, JG, Lee, YH, et al. Healthcare decision support system for administration of chronic diseases. Healthcare Inform Res 2014 Jul 1; 20(3): 173–82.
Google Scholar |
Crossref |
Medline22. Nauck, DD . Fuzzy data analysis with NEFCLASS. Int J Approx Reason 2003 Feb 1; 32(2-3): 103–30.
Google Scholar |
Crossref23. Swennen, D . Open rules: An open source business decision management system linking business and technology. (Master's thesis, UHasselt Diepenbeek). UHasselt Diepenbeek, 2012.
Google Scholar24. Friedman-Hill, E . Jess, the rule engine for the java platform. . Manning Publications, 2008.
Google Scholar25. Tejaswini, H, Manohara Pai, MM, Pai, RM, et al. An ontology-based decision support system for nutrition deficiency. In: 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2020, p. 267–274. DOI:
10.1109/DISCOVER50404.2020.9278069.
Google Scholar |
Crossref26. Protégé . “Protégé OWL Ontology Editor”, Stanford University [Online]. Protégé. Available:
http://protege.stanford.edu (Accessed 15 Feb 2021).
Google Scholar27. Chen, D, Jin, D, Goh, TT, et al. Context-awareness based personalized recommendation of anti-hypertension drugs. J Med Sys 2016 Sep 1; 40(9): 202.
Google Scholar |
Crossref |
Medline28. Forgy, CL . Rete: a fast algorithm for the many pattern/many object pattern match problem. In: Readings in Artificial Intelligence and Databases. Morgan Kaufmann, 1989 Jan 1, pp. 547–559.
Google Scholar29. Quinn, S, Bond, R, Nugent, C. Ontological modelling and rule-based reasoning for the provision of personalized patient education. Expert Syst 2017 Apr; 34(2): e12134.
Google Scholar |
Crossref30. Sirin, E, Parsia, B, Grau, BC, et al. Pellet: a practical owl-dl reasoner. J Web Seman 2007 Jun 1; 5(2): 51–53.
Google Scholar |
Crossref31. Shearer, R, Motik, B, Horrocks, I. HermiT: a highly efficient OWL reasoner. Owled 2008 Oct 26; 432: 91.
Google Scholar32. Tsarkov, D, Horrocks, I. FaCT++ description logic reasoner: system description. In: International joint conference on automated reasoning. Berlin, Heidelberg: Springer, 2006 Aug 17, pp. 292–297.
Google Scholar |
Crossref33. Proctor, M, Neale, M, Lin, P, et al. Drools documentation. JBoss 2008 Jan; 5(05): 2008.
Google Scholar34. Drools engine, (n.d.).
http://www.drools.org/ (Accessed June 25, 2019).
Google Scholar35. SWRL Drools Tab.
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLDroolsTab (2012, Accessed 25 June 2019).
Google Scholar36. Horridge, M, Bechhofer, S. The OWL API: A Java API for working with OWL 2 ontologies. In: Proceedings of the 6th International Conference on OWL: Experiences and Directions. CEUR-WS. org, 2009 Oct 23, 529, pp. 49–58.
Google Scholar37. Pellet API . OWL 2 Reasoner Java API. Stardog-Union. Available:
https://github.com/stardog-union/pellet (Accessed 15 Feb 2021).
Google Scholar38. O'Connor, MJ, Das, AK. SQWRL: a query language for OWL. OWLED 2009; 529: 2009.
Google Scholar39. Swain, PH, Hauska, H. The decision tree classifier: Design and potential. IEEE Trans Geosci Electron 1977; 15(3): 142–147.
Google Scholar |
Crossref40. Aruljothi, R, Eapen, M. Booster in high dimensional data classification using Cnn and decision tree algorithm. Int J Recent Technol Eng July 2019; 8: S5.
Google Scholar41. Bassiliades, N. . SWRL2SPIN: A tool for transforming SWRL rule bases in OWL ontologies to object-oriented SPIN rules. arXiv preprint, 2018 Jan 27.
Google Scholar
Comments (0)