The Role of Indian Hedgehog Signaling in Tendon Response to Subacromial Impingement: Evaluation Using a Mouse Model

1. Agarwal, S, Loder, SJ, Cholok, D, et al. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells. 2017;35(3):705-710.
Google Scholar | Crossref | Medline2. Bankhead, P, Loughrey, MB, Fernández, JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.
Google Scholar | Crossref | Medline3. Biberthaler, P, Wiedemann, E, Nerlich, A, et al. Microcirculation associated with degenerative rotator cuff lesions. In vivo assessment with orthogonal polarization spectral imaging during arthroscopy of the shoulder. J Bone Joint Surg Am. 2003;85(3):475-480.
Google Scholar | Crossref | Medline | ISI4. Bigliani, L, Morrison, D, April, E. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228.
Google Scholar5. Breidenbach, AP, Aschbacher-Smith, L, Lu, Y, et al. Ablating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis. J Orthop Res. 2015;33(8):1142-1151.
Google Scholar | Crossref | Medline6. Carbone, A, Carballo, C, Ma, R, et al. Indian hedgehog signaling and the role of graft tension in tendon-to-bone healing: evaluation in a rat ACL reconstruction model. J Orthop Res. 2016;34(4):641-649.
Google Scholar | Crossref | Medline7. Chard, MD, Sattelle, LM, Hazleman, BL. The long-term outcome of rotator cuff tendinitis—a review study. Br J Rheumatol. 1988;27:385-389.
Google Scholar | Crossref | Medline8. Cohen, MM The hedgehog signaling network. Am J Med Genet A. 2003;123A(1):5-28.
Google Scholar | Crossref | Medline9. Cong, GT, Lebaschi, AH, Camp, CL, et al. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: development and analysis of a novel murine model. J Orthop Res. 2018;36:2780-2788.
Google Scholar | Crossref | Medline10. Croen, BJ, Carballo, CB, Wada, S, et al. Chronic subacromial impingement leads to supraspinatus muscle functional and morphological changes: evaluation in a murine model. J Orthop Res. 2021;39(10):2243-2251.
Google Scholar | Crossref | Medline11. Deng, XH, Lebaschi, A, Camp, CL, et al. Expression of signaling molecules involved in embryonic development of the insertion site is inadequate for reformation of the native enthesis: evaluation in a novel murine ACL reconstruction model. J Bone Joint Surg Am. 2018;100(15):e102.
Google Scholar | Crossref | Medline12. Eliasberg, CD, Wada, S, Carballo, CB, et al. Identification of inflammatory mediators in tendinopathy using a murine subacromial impingement model. J Orthop Res. 2019;37(12):2575-2582.
Google Scholar | Crossref | Medline13. Factor, D, Dale, B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther. 2014;9:274-288.
Google Scholar | Medline14. Feng, H, Xing, W, Han, Y, et al. Tendon-derived cathepsin K-expressing progenitor cells activate hedgehog signaling to drive heterotopic ossification. J Clin Invest. 2020;130(12):6354-6365.
Google Scholar | Crossref | Medline15. Han, X, Zhuang, Y, Zhang, Z, Guo, L, Wang, W. Regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes in entheses of pig Achilles tendon. Stem Cells Int. 2016;2016:8235172.
Google Scholar | Crossref | Medline16. Hou, Y, Mao, Z, Wei, X, et al. The roles of TGF-β1 gene transfer on collagen formation during Achilles tendon healing. Biochem Biophys Res Commun. 2009;383(2):235-239.
Google Scholar | Crossref | Medline | ISI17. Huang, D, Wang, Y, Tang, J, Luo, S. Molecular mechanisms of suppressor of fused in regulating the hedgehog signalling pathway. Oncol Lett. 2018;15(5):6077-6086.
Google Scholar | Medline18. Ingham, PW, McMahon, AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059-3087.
Google Scholar | Crossref | Medline | ISI19. Jeong, JY, Song, SY, Yoo, JC, Park, KM, Lee, SM. Comparison of outcomes with arthroscopic repair of acute-on-chronic within 6 months and chronic rotator cuff tears. J Shoulder Elbow Surg. 2017;26:648-655.
Google Scholar | Crossref | Medline20. Kayama, T, Mori, M, Ito, Y, et al. Gtf2ird1-dependent Mohawk expression regulates mechanosensing properties of the tendon. Mol Cell Biol. 2016;36(8):1297-1309.
Google Scholar | Crossref | Medline21. Kimura, H, Stephen, D, Joyner, A, Curran, T. Gli1 is important for medulloblastoma formation in Ptc1+/– mice. Oncogene. 2005;24(25):4026-4036.
Google Scholar | Crossref | Medline22. Liu, CF, Breidenbach, A, Aschbacher-Smith, L, Butler, D, Wylie, C. A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse. PLoS One. 2013;8(6):e65411.
Google Scholar | Crossref | Medline23. Lu, YF, Liu, Y, Fu, WM, et al. Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. FASEB J. 2017;31(3):954-964.
Google Scholar | Crossref | Medline24. Michener, LA, McClure, PW, Karduna, AR. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech (Bristol, Avon). 2003;18(5):369-379.
Google Scholar | Crossref | Medline25. Mohler, J . Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics. 1988;120(4):1061-1072.
Google Scholar | Crossref | Medline26. Neer, CS . Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 1972;54:41-50.
Google Scholar | Crossref | Medline | ISI27. Neer, CS . Impingement lesions. Clin Orthop Rel Res. 1983;173:70-77.
Google Scholar | Crossref28. Ostör, AJK, Richards, CA, Prevost, AT, Speed, CA, Hazleman, BL. Diagnosis and relation to general health of shoulder disorders presenting to primary care. Rheumatology. 2005;44(6):800-805.
Google Scholar | Crossref | Medline | ISI29. Potter, RM, Huynh, RT, Volper, BD, et al. Impact of TGF-β inhibition during acute exercise on Achilles tendon extracellular matrix. Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R157-R164.
Google Scholar | Crossref | Medline30. Pryce, BA, Watson, SS, Murchison, ND, Staverosky, JA, Dunker, N, Schweitzer, R. Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development. 2009;136:1351-1361.
Google Scholar | Crossref | Medline | ISI31. Rudzki, JR, Adler, RS, Warren, RF, et al. Contrast-enhanced ultrasound characterization of the vascularity of the rotator cuff tendon: age- and activity-related changes in the intact asymptomatic rotator cuff. J Shoulder Elbow Surg. 2008;17(1)(suppl):96S-100S.
Google Scholar | Crossref | Medline32. Schneeberger, AG, Nyffeler, RW, Gerber, C. Structural changes of the rotator cuff caused by experimental subacromial impingement in the rat. J Shoulder Elbow Surg. 1998;7:375-380.
Google Scholar | Crossref | Medline | ISI33. Schwartz, AG, Long, F, Thomopoulos, S. Enthesis fibrocartilage cells originate from a population of hedgehog-responsive cells modulated by the loading environment. Development. 2015;142(1):196-206.
Google Scholar | Crossref | Medline34. Soslowsky, LJ, Carpenter, JE, DeBano, CM, Banerji, I, Moalli, MR. Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elbow Surg. 1996;5(5):383-392.
Google Scholar | Crossref | Medline35. Soslowsky, LJ, Thomopoulos, S, Esmail, A, et al. Rotator cuff tendinosis in an animal model: role of extrinsic and overuse factors. Ann Biomed Eng. 2002;30:1057-1063.
Google Scholar | Crossref | Medline | ISI36. Thomopoulos, S, Genin, GM, Galatz, LM. The development and morphogenesis of the tendon-to-bone insertion—what development can teach us about healing. J Musculoskelet Neuronal Interact. 2010;10(1):35-45.
Google Scholar | Medline | ISI37. Toliopoulos, P, Desmeules, F, Boudreault, J, et al. Efficacy of surgery for rotator cuff tendinopathy: a systematic review. Clin Rheumatol. 2014;33(10):1373-1383.
Google Scholar | Crossref | Medline | ISI38. Wada, S, Lebaschi, AH, Nakagawa, Y, et al. Postoperative tendon loading with treadmill running delays tendon-to-bone healing: immunohistochemical evaluation in a murine rotator cuff repair model. J Orthop Res. 2019;37(7):1628-1637.
Google Scholar | Crossref | Medline39. Wang, Y, Zhang, X, Huang, H, et al. Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating hedgehog signaling. Elife. 2017;6:e30474.
Google Scholar | Crossref | Medline40. Yamaguchi, K, Ditsios, K, Middleton, WD, Hildebolt, CF, Galatz, LM, Teefey, SA. The demographic and morphological features of rotator cuff disease: a comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 2006;88(8):1699-1704.
Google Scholar | Crossref | Medline | ISI41. Zhang, X, Wada, S, Zhang, Y, Chen, D, Deng, XH, Rodeo, SA. Assessment of mitochondrial dysfunction in a murine model of supraspinatus tendinopathy. J Bone Joint Surg Am. 2021;103(2):174-183.
Google Scholar | Crossref | Medline42. Zhang, Y, Deng, XH, Lebaschi, AH, et al. Expression of alarmins in a murine rotator cuff tendinopathy model. J Orthop Res. 2020;38(11):2513-2520.
Google Scholar | Crossref | Medline43. Zong, JC, Mosca, MJ, Degen, RM, et al. Involvement of Indian hedgehog signaling in mesenchymal stem cell-augmented rotator cuff tendon repair in an athymic rat model. J Shoulder Elbow Surg. 2017;26(4):580-588.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif