Bisoprolol and/or hyperoxic breathing do not reduce hyperventilation in pulmonary arterial hypertension patients

1. Galiè, N, Humbert, M, Vachiery, J-L, et al. 2015 ESC/EAS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2016; 12: 79–86.
Google Scholar2. Sajkov, D, Petrovsky, N, Palange, P. Management of dyspnea in advanced pulmonary arterial hypertension. Curr Opin Support Palliat Care 2010; 4: 76–84.
Google Scholar | Crossref | Medline3. Sun, XG, Hansen, JE, Oudiz, RJ, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 2001; 104: 429–435.
Google Scholar | Crossref | Medline | ISI4. Wensel, R, Opitz, CF, Anker, SD, et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 2002; 106: 319–324.
Google Scholar | Crossref | Medline | ISI5. Yasunobu, Y, Oudiz, RJ, Sun, XG, et al. End-tidal Pco2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest 2005; 127: 1637–1646.
Google Scholar | Crossref | Medline | ISI6. Dimopoulos, S, Anastasiou-Nana, M, Katsaros, F, et al. Impairment of autonomic nervous system activity in patients with pulmonary arterial hypertension: a case control study. J Card Fail 2009; 15: 882–889.
Google Scholar | Crossref | Medline7. Hoeper, MM, Pletz, MW, Golpon, H, et al. Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2007; 29: 944–950.
Google Scholar | Crossref | Medline | ISI8. Naeije, R, Van de Borne, P. Clinical relevance of autonomic nervous system disturbances in pulmonary arterial hypertension. Eur Respir J 2009; 34: 792–794.
Google Scholar | Crossref | Medline | ISI9. Farina, S, Bruno, N, Agalbato, C, et al. Physiological insights of exercise hyperventilation in arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol 2018; 259: 178–182.
Google Scholar | Crossref | Medline10. Velez-Roa, S, Ciarka, A, Najem, B, et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 2004; 110: 1308–1312.
Google Scholar | Crossref | Medline | ISI11. Agostoni, P, Guazzi, M, Bussotti, M, et al. Carvedilol reduces the inappropriate increase of ventilation during exercise in heart failure patients. Chest 2002; 122: 2062–2067.
Google Scholar | Crossref | Medline | ISI12. Wolk, R, Johnson, BD, Somers, VK, et al. Effects of β-blocker therapy on ventilatory responses to exercise in patients with heart failure. J Card Fail 2005; 11: 333–339.
Google Scholar | Crossref | Medline | ISI13. Ulrich, S, Hasler, ED, Saxer, S, et al. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial. Eur Heart J 2017; 38: 1159–1168.
Google Scholar | Crossref | Medline14. Van Campen, JSJA, De Boer, K, Van De Veerdonk, MC, et al. Bisoprolol in idiopathic pulmonary arterial hypertension: an explorative study. Eur Respir J 2016; 48: 787–796.
Google Scholar | Crossref | Medline | ISI15. Contini, M, Apostolo, A, Cattadori, G, et al. Multiparametric comparison of CARvedilol, vs. NEbivolol, vs. BIsoprolol in moderate heart failure: the CARNEBI trial. Int J Cardiol 2013; 168: 2134–2140.
Google Scholar | Crossref | Medline16. Dean, JB, Mulkey, DK, Henderson, RA, et al. Hyperoxia, reactive oxygen species, and hyperventilation: Oxygen sensitivity of brain stem neurons. J Appl Physiol 2004; 96: 784–791.
Google Scholar | Crossref | Medline | ISI17. Guyenet, PG, Bayliss, DA. Neural control of breathing and CO2 homeostasis. Neuron 2015; 87: 946–961.
Google Scholar | Crossref | Medline18. Reybrouck, T, Mertens, L, Schulze-Neick, I, et al. Ventilatory inefficiency for carbon dioxide during exercise in patients with pulmonary hypertension. Clin Physiol 1998; 18: 337–344.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif