Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19

1.

Xu Z, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2. https://doi.org/10.1016/S2213-2600(20)30076-X.

CAS  Article  PubMed  PubMed Central  Google Scholar 

2.

Morris G, et al. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach. Life Sci. 2020;258: 118166. https://doi.org/10.1016/j.lfs.2020.118166.

CAS  Article  PubMed  PubMed Central  Google Scholar 

3.

Shaw B, Daskareh M, Gholamrezanezhad A. The lingering manifestations of COVID-19 during and after convalescence: update on long-term pulmonary consequences of coronavirus disease 2019 (COVID-19). Radiol Med. 2021;126(1):40–6. https://doi.org/10.1007/s11547-020-01295-8.

Article  PubMed  Google Scholar 

4.

Ding X, Xu J, Zhou J, Long Q. Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol. 2020;127: 109009. https://doi.org/10.1016/j.ejrad.2020.109009.

Article  PubMed  PubMed Central  Google Scholar 

5.

Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res. 2017;143:142–50. https://doi.org/10.1016/j.antiviral.2017.03.022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

6.

Wong KT, et al. Severe acute respiratory syndrome: thin-section computed tomography features, temporal changes, and clinicoradiologic correlation during the convalescent period. J Comput Assist Tomogr. 2004;28(6):790–5. https://doi.org/10.1097/00004728-200411000-00010.

Article  PubMed  Google Scholar 

7.

Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–47. https://doi.org/10.2353/ajpath.2007.061088.

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

Tse GM, et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol. 2004;57(3):260–5. https://doi.org/10.1136/jcp.2003.013276.

Article  PubMed  PubMed Central  Google Scholar 

9.

Zhang P, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020;8:8. https://doi.org/10.1038/s41413-020-0084-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

10.

Ackermann M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8. https://doi.org/10.1056/NEJMoa2015432.

CAS  Article  PubMed  PubMed Central  Google Scholar 

11.

Hariri L, Hardin CC. Covid-19, Angiogenesis, and ARDS endotypes. N Engl J Med. 2020;383(2):182–3. https://doi.org/10.1056/NEJMe2018629.

CAS  Article  PubMed  Google Scholar 

12.

Varga Z, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

13.

Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80. https://doi.org/10.1016/j.cell.2020.02.052 (e8).

CAS  Article  PubMed  PubMed Central  Google Scholar 

14.

Janardhan V, Janardhan V, Kalousek V. COVID-19 as a blood clotting disorder masquerading as a respiratory illness: a cerebrovascular perspective and therapeutic implications for stroke thrombectomy. J Neuroimaging. 2020;30(5):555–61. https://doi.org/10.1111/jon.12770.

Article  PubMed  Google Scholar 

15.

Grobler C, et al. Covid-19: The rollercoaster of fibrin(ogen), D-dimer, Von Willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci. 2020; 21(14). https://doi.org/10.3390/ijms21145168.

16.

Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130. https://doi.org/10.1186/s12872-015-0124-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

17.

Berger JS, et al. Prevalence and outcomes of D-dimer elevation in hospitalized patients with COVID-19. Arterioscler Thromb Vasc Biol. 2020;40(10):2539–47. https://doi.org/10.1161/ATVBAHA.120.314872.

CAS  Article  PubMed  PubMed Central  Google Scholar 

18.

Wang F, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10). https://doi.org/10.1172/jci.insight.137799.

19.

Chen W. A potential treatment of COVID-19 with TGF-beta blockade. Int J Biol Sci. 2020;16(11):1954–5. https://doi.org/10.7150/ijbs.46891.

CAS  Article  PubMed  PubMed Central  Google Scholar 

20.

Goplen NP, et al. Tissue-resident CD8(+) T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci Immunol. 2020;5(53). https://doi.org/10.1126/sciimmunol.abc4557.

21.

Hwang DM, et al. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol. 2005;18(1):1–10. https://doi.org/10.1038/modpathol.3800247.

CAS  Article  Google Scholar 

22.

Xie L, et al. Dynamic changes of serum SARS-coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir Res. 2005;6:5. https://doi.org/10.1186/1465-9921-6-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

23.

Yousefi H, et al. SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: an in-silico approach. Biomed Pharmacother. 2020;130: 110548. https://doi.org/10.1016/j.biopha.2020.110548.

CAS  Article  PubMed  PubMed Central  Google Scholar 

24.

Aydemir MN, et al. Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Rep. 2021;22: 101012. https://doi.org/10.1016/j.genrep.2020.101012.

Article  PubMed  Google Scholar 

25.

Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543–8. https://doi.org/10.1113/expphysiol.2007.040048.

CAS  Article  PubMed  PubMed Central  Google Scholar 

26.

Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol. 2006;6(3):271–6. https://doi.org/10.1016/j.coph.2006.03.001.

CAS  Article  PubMed  PubMed Central  Google Scholar 

27.

Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J Mol Med (Berl). 2006;84(10):814–20. https://doi.org/10.1007/s00109-006-0094-9.

CAS  Article  Google Scholar 

28.

Li X, et al. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L178-85. https://doi.org/10.1152/ajplung.00009.2008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

29.

Molteni A, et al. Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des. 2007;13(13):1307–16. https://doi.org/10.2174/138161207780618777.

CAS  Article  PubMed  Google Scholar 

30.

Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax. 2004;59(1):31–8. https://doi.org/10.1136/thx.2003.000893.

CAS  Article  PubMed  PubMed Central  Google Scholar 

31.

Waseda Y, et al. Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respir Res. 2008;9:43. https://doi.org/10.1186/1465-9921-9-43.

CAS  Article  PubMed  PubMed Central  Google Scholar 

32.

Beijing Group of National Research Project for S. Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin Med J (Engl). 2003;116(9):1283-7.

33.

Baas T, Taubenberger JK, Chong PY, Chui P, Katze MG. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. J Interferon Cytokine Res. 2006;26(5):309–17. https://doi.org/10.1089/jir.2006.26.309.

CAS  Article  PubMed  Google Scholar 

34.

He L, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol. 2006;210(3):288–97. https://doi.org/10.1002/path.2067.

CAS  Article  PubMed  PubMed Central  Google Scholar 

35.

Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem. 2008;283(6):3272–80. https://doi.org/10.1074/jbc.M708033200.

CAS  Article  PubMed  PubMed Central  Google Scholar 

36.

He R, et al. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun. 2004;316(2):476–83. https://doi.org/10.1016/j.bbrc.2004.02.074.

CAS  Article  PubMed  PubMed Central  Google Scholar 

37.

Zeng W, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020;527(3):618–23. https://doi.org/10.1016/j.bbrc.2020.04.136.

CAS  Article  PubMed  PubMed Central  Google Scholar 

38.

Clark-Lewis I, Dewald B, Loetscher M, Moser B, Baggiolini M. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem. 1994;269(23):16075–81.

CAS  Article  Google Scholar 

39.

Covell DG, Smythers GW, Gronenborn AM, Clore GM. Analysis of hydrophobicity in the alpha and beta chemokine families and its relevance to dimerization. Protein Sci. 1994;3(11):2064–72. https://doi.org/10.1002/pro.5560031119.

Comments (0)

No login
gif