The Assessment of the Usefulness of Selected Markers in the Diagnosis of Chronic Kidney Disease in Children

1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group . KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3:1-150.
Google Scholar | ISI2. Harambat, J, van Stralen, KJ, Kim, JJ, Tizard, EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27:363-373.
Google Scholar | Crossref | Medline | ISI3. Mattoo, TK, Carpenter, MA, Moxey-Mims, M, Chesney, RW; RIVUR Trial Investigators. The RIVUR trial: a factual interpretation of our data. Pediatr Nephrol. 2015;30:707-712.
Google Scholar | Crossref | Medline4. Helal, I, Fick-Brosnahan, GM, Reed-Gitomer, B, Schrier, RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293-300.
Google Scholar | Crossref | Medline | ISI5. Gordon, I, Colarinha, P, Fettich, J, et al.; Paediatric Committee of the European Association of Nuclear Medicine. Guidelines for standard and diuretic renography in children. Eur J Nucl Med. 2001;28:21-30.
Google Scholar6. Maschio, G, Oldrizzi, L, Rugiu, C. Is there a “point of no return” in progressive renal disease? J Am Soc Nephrol. 1991;2:832-840.
Google Scholar | Medline7. Mihai, S, Codrici, E, Popescu, ID, et al. Proteomic biomarkers panel: new insights in chronic kidney disease. Dis Markers. 2016;2016:3185232.
Google Scholar | Crossref | Medline8. Krstić, D, Tomić, N, Radosavljević, B, et al. Biochemical Markers of Renal Function. Curr Med Chem. 2016;23:2018-2040.
Google Scholar | Crossref | Medline9. Mischak, H, Delles, C, Vlahou, A, Vanholder, R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol. 2015;11:221-232.
Google Scholar | Crossref | Medline | ISI10. Rysz, J, Gluba-Brzozka, A, Franczyk, B, Jablonowski, Z, Cialkowska-Rysz, A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int J Mol Sci. 2017;18:1702.
Google Scholar | Crossref11. Bonventre, JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24:3265-3268.
Google Scholar | Crossref | Medline | ISI12. Ichimura, T, Asseldonk, EJ, Humphreys, BD, Gunaratnam, L, Duffield, JS, Bonventre, JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118:1657-1668.
Google Scholar | Crossref | Medline | ISI13. Ichimura, T, Bonventre, JV, Bailly, V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273:4135-4142.
Google Scholar | Crossref | Medline | ISI14. Marchewka, Z, Tacik, A, Piwowar, A. KIM-1 i NGAL jako potencjalne biomarkery w diagnostyce i rozwoju procesu nowotworowego. Postepy Hig Med Dosw. 2016;70:329-336.
Google Scholar | Crossref15. Grabner, A, Mazzaferro, S, Cianciolo, G, et al. Fibroblast growth factor 23: mineral metabolism and beyond. Contrib Nephrol. 2017;190:83-95.
Google Scholar | Crossref | Medline16. Riminucci, M, Collins, MT, Fedarko, NS, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112:683-692.
Google Scholar | Crossref | Medline | ISI17. Yilmaz, G, Ustundag, S, Temizoz, O, et al. Fibroblast growth factor-23 and carotid artery intima media thickness in chronic kidney disease. Clin Lab. 2015;61:1061-1070.
Google Scholar | Crossref | Medline18. Isakova, T, Xie, H, Yang, W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432-2439.
Google Scholar | Crossref | Medline | ISI19. David, V, Martin, A, Isakova, T, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135-146.
Google Scholar | Crossref | Medline | ISI20. de Seigneux, S, Martin, PY. Phosphate and FGF23 in the renoprotective benefit of RAAS inhibition. Pharmacol Res. 2016;106:87-91.
Google Scholar | Crossref | Medline21. Serafini-Cessi, F, Malagolini, N, Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis. 2003;42:658-676.
Google Scholar | Crossref | Medline | ISI22. Scherberich, JE, Gruber, R, Nockher, WA, et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant. 2018;33:284-295.
Google Scholar | Crossref | Medline23. Rampoldi, L, Scolari, F, Amoroso, A, Ghiggeri, G, Devuyst, O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 2011;80:338-347.
Google Scholar | Crossref | Medline24. Lhotta, K : Uromodulin and chronic kidney disease. Kidney Blood Press Res. 2010;33:393-398.
Google Scholar | Crossref | Medline25. Prajczer, S, Heidenreich, U, Pfaller, W, Kotanko, P, Lhotta, K, Jennings, P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol Dial Transplant. 2010;25:1896-1903.
Google Scholar | Crossref | Medline26. Szczepańska, S., Kłos, K, Janas, R. Lipokalina związana z żelatynazą neutrofili (NGAL) jako nowy marker w diagnostyce chorób nerek, serca, nowotworów, zaburzeń metabolicznych i cukrzycy. Standardy Medyczne/Pediatria. 2011;8:105-111.
Google Scholar27. Alderson, HV, Ritchie, JP, Pagano, S, et al. The associations of blood kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin with progression from CKD to ESRD. Clin J Am Soc Nephrol. 2016;11:2141-2149.
Google Scholar | Crossref | Medline28. Mohkam, M, Ghafari, A. The role of urinary N-acetyl-beta-glucosaminidase in diagnosis of kidney diseases. J Ped Nephrology. 2015;3:84-91.
Google Scholar29. Han, WK, Waikar, SS, Johnson, A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863-869.
Google Scholar | Crossref | Medline | ISI30. Tamura, M, Arakawa, Y, Kawashima, M, et al. O1-12-1can early measurement of urinary N-acetyl-β-glucosaminidase help predict toxicity of cisplatin-based chemotherapy? Ann Oncol. 2014;25:v49-v.
Google Scholar | Crossref | Medline31. Mishra, OP, Jain, P, Srivastava, P, Prasad, R. Urinary N-acetyl-beta-D glucosaminidase (NAG) level in idiopathic nephrotic syndrome. Pediatr Nephrol. 2012;27:589-596.
Google Scholar | Crossref | Medline32. Ali, RJ, Al-Obaidi, FH, Arif, HS. The role of urinary N-acetyl beta-D-glucosaminidase in children with urological problems. Oman Med J. 2014;29:285-288.
Google Scholar | Crossref | Medline33. Belli, A, Scalercio, F, Martino, F, et al. Evaluation of N-acetyl-beta-glucosaminidase in upper and lower urinary tract infections in childhood. Clinical study of 168 children. Minerva Pediatr. 1996;48:503-507.
Google Scholar | Medline34. Kern, EF, Erhard, P, Sun, W, Genuth, S, Weiss, MF. Early urinary markers of diabetic kidney disease: a nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis. 2010;55:824-834.
Google Scholar | Crossref | Medline | ISI35. Schwartz, G, Muñoz, A, Schneider, F, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629-637.
Google Scholar | Crossref | Medline | ISI36. APRTCS: 2008 Annual Report, Rockville, MD, EMMES; 2008. Accessed June 11, 2009. Dostępny w internecie.
Google Scholar37. Lukaszyk, E, Lukaszyk, M, Koc-Zorawska, E, Bodzenta-Lukaszyk, A, Malyszko, J. Fibroblast growth factor 23, iron and inflammation - are they related in early stages of chronic kidney disease? Arch Med Sci. 2017;13:845-850.
Google Scholar | Crossref | Medline38. Pavik, I, Jaeger, P, Ebner, L, Wagner, CA, et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. 2013;28:352-359.
Google Scholar | Crossref | Medline39. Tranaeus Lindblad, Y, Olauson, H, Vavilis, G, et al. The FGF23-Klotho axis and cardiac tissue Doppler imaging in pediatric chronic kidney disease-a prospective cohort study. Pediatr Nephrol. 2018;33:147-157.
Google Scholar | Crossref | Medline40. Wesseling-Perry, K, Pereira, RC, Tseng, CH, et al. Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 2012;7:146-152.
Google Scholar | Crossref | Medline41. Mori, K, Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007;71:967-970.
Google Scholar | Crossref | Medline | ISI42. Bolignano, D, Lacquaniti, A, Coppolino, G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337-344.
Google Scholar | Crossref | Medline | ISI43. Mitsnefes, MM, Kathman, TS, Mishra, J, et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol. 2007;22:101-108.
Google Scholar | Crossref | Medline | ISI44. Parmaksiz, G, Noyan, A, Dursun, H, Ince, E, Anarat, R, Cengiz, N. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr Nephrol. 2016;31:97-103.
Google Scholar | Crossref | Medline45. Lee, HE, Kim, DK, Kang, HK, Park, K. The diagnosis of febrile urinary tract infection in children may be facilitated by urinary biomarkers. Pediatr Nephrol. 2015;30:123-130.
Google Scholar | Crossref | Medline46. Waikar, SS, Sabbisetti, V, Ärnlöv, J, et al.; for the Chronic Kidney Disease Biomarkers Consortium I. Relationship of proximal tubular injury to chronic kidney disease as assessed by urinary kidney injury molecule-1 in five cohort studies. Nephrol Dial Transplant. 2016;31:1460-1470.
Google Scholar | Crossref | Medline47. Toker, A, Ziypak, T, Orsal, E, Laloglu, E, Bedir, F, Aksoy, Y. Is urinary kidney injury molecule-1 a noninvasive marker for renal scarring in children with vesicoureteral reflux? Urology. 2013;81:168-172.
Google Scholar | Crossref | Medline48. Noyan, A, Parmaksiz, G, Dursun, H, Ezer, SS, Anarat, R, Cengiz, N. Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis. J Pediatr Urol. 2015;11:249.e1-6.
Google Scholar | Crossref | Medline49. Steubl, D, Block, M, Herbst, V, et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine (Baltimore). 2016;95:e3011.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif