Acceleration of PDE-Based Biological Simulation Through the Development of Neural Network Metamodels

1.

• Alber M, Buganza Tepole A, Cannon WR, et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digit Med. 2019;2:1–11. https://doi.org/10.1038/s41746-019-0193-yThis article reviews the current state of the art of the applications of machine learning and multiscale modeling in the biological field.

Article  Google Scholar 

2.

Breen PG, Foley CN, Boekholt T, Zwart SP. Newton vs the machine: solving the chaotic three-body problem using deep neural networks. MNRAS. 2019.

3.

Chan H, Narayanan B, Cherukara MJ, Sen FG, Sasikumar K, Gray SK, et al. Machine learning classical interatomic potentials for molecular dynamics from first-principles training data. J Phys Chem C. 2019;123:6941–57.

CAS  Article  Google Scholar 

4.

Deringer VL, Bernstein N, Bartók AP, Cliffe MJ, Kerber RN, Marbella LE, et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J Phys Chem Lett. 2018;9:2879–85. https://doi.org/10.1021/acs.jpclett.8b00902.

CAS  Article  PubMed  Google Scholar 

5.

Duchi J, Hazan E. Singer Y. JMLR: Adaptive subgradient methods for online learning and stochastic optimization. 2011.

Google Scholar 

6.

Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.

Google Scholar 

7.

Hagge T, Stinis P, Yeung E, Tartakovsky AM. Solving differential equations with unknown constitutive relations as recurrent neural networks. 2017.

Google Scholar 

8.

Trevor H, Tibshirani R, Friedman J. The elements of statistical learning the elements of statistical LearningData mining, inference, and prediction. In: Second Edition; 2009.

Google Scholar 

9.

Hengenius JB, Gribskov M, Rundell AE, Umulis DM. Making models match measurements: model optimization for morphogen patterning networks. Semin Cell Dev Biol. 2014;35:109–23.

CAS  Article  Google Scholar 

10.

Hinton G. Overview of mini-batch gradient descent. 2012.

Google Scholar 

11.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.

CAS  Article  Google Scholar 

12.

Karumuri S, Tripathy R, Bilionis I, Panchal J. Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks. J Comput Phys. 2020;404:109120. https://doi.org/10.1016/j.jcp.2019.109120.

Article  Google Scholar 

13.

Kingma DP, Ba JL. Adam: a method for stochastic optimization. ICLR: International Conference on Learning Representations. 2015.

14.

Krizhevsky A, Sutskever I. Hinton GE. Imagenet classification with deep convolutional neural networks. NIPS: Neural Information Processing Systems Conference. 2012.

15.

Edelstein-Keshet L. Mathematical models in biology. Society for Industrial and Applied Mathematics. 2005.

16.

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278–324.

17.

Lee T, Bilionis I, Tepole AB. Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression. Comput Methods Appl Mech Eng. 2020;359:112724. https://doi.org/10.1016/j.cma.2019.112724.

Article  PubMed  Google Scholar 

18.

Lee T, Turin SY, Gosain AK, Bilionis I, Buganza Tepole A. Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery. Biomech Model Mechanobiol. 2018;17:1857–73. https://doi.org/10.1007/s10237-018-1061-4.

Article  PubMed  Google Scholar 

19.

• Li L, Wang X, Mullins MC, Umulis DM. Evaluation of BMP-mediated patterning in a 3D mathematical model of the zebrafish blastula embryo. J Math Biol. 2020;80:505–20. https://doi.org/10.1007/s00285-019-01449-xThis study provides a thorough description of the mathematical modeling in BMP-mediated patterning of the zebrafish embryo.

Article  PubMed  Google Scholar 

20.

Little SC, Mullins MC. Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res Part C Embryo Today Rev. 2006;78:224–42. https://doi.org/10.1002/bdrc.20079.

CAS  Article  Google Scholar 

21.

Little SC, Mullins MC. Twisted gastrulation promotes BMP signaling in zebrafish dorsal-ventral axial patterning. Development. 2004;131:5825–35. https://doi.org/10.1242/dev.01464.

CAS  Article  PubMed  Google Scholar 

22.

Mjolsness E, DeCoste D. Machine learning for science: state of the art and future prospects. Science. 2001;293(80):2051–5.

CAS  Article  Google Scholar 

23.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–33.

CAS  Article  Google Scholar 

24.

Nguyen-Tuong D, Seeger M, Peters J. Model learning with local Gaussian process regression. Adv Robot. 2009;23(15):2015–34.

25.

Pargett M, Rundell AE, Buzzard GT, Umulis DM. Model-based analysis for qualitative data: an application in Drosophila germline stem cell regulation. PLoS Comput Biol. 2014;10. https://doi.org/10.1371/journal.pcbi.1003498.

26.

Peng GCY, Alber M, Buganza Tepole A, Cannon WR, de S, Dura-Bernal S, et al. Multiscale modeling meets machine learning: what can we learn? Arch Comput Methods Eng. 2020:1–21. https://doi.org/10.1007/s11831-020-09405-5.

27.

Pretorius CJ, du Plessis MC, Cilliers CB. Simulating robots without conventional physics: a neural network approach. J Intell Robot Syst. 2013;71.

28.

Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686–707. https://doi.org/10.1016/j.jcp.2018.10.045.

Article  Google Scholar 

29.

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

Article  Google Scholar 

30.

Rupp M, Tkatchenko A, Muller K-R, von Lilienfeld OA. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. 2012;108.

31.

Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, et al. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Syst. 2020;194:105596. https://doi.org/10.1016/j.knosys.2020.105596.

Article  Google Scholar 

32.

Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8(4):3192–203.

33.

Sugiyama M. Introduction to statistical machine learning. Amsterdam: Elsevier Inc.; 2015.

Google Scholar 

34.

Thompson MJ, Othmer HG, Umulis DM. A primer on reaction-diffusion models in embryonic development. Chichester, UK: eLS. John Wiley & Sons, Ltd.; 2018. p. 1–16.

Google Scholar 

35.

Umulis DM, Othmer HG. The role of mathematical models in understanding pattern formation in developmental biology. Bull Math Biol. 2015;77:817–45. https://doi.org/10.1007/s11538-014-0019-7.

Article  PubMed  Google Scholar 

36.

Wang R, Kalnay E, Balachandran B. Neural machine-based forecasting of chaotic dynamics. Nonlinear Dyn. 2019a;98:2903–17. https://doi.org/10.1007/s11071-019-05127-x.

Article  Google Scholar 

37.

• Wang S, Fan K, Luo N, et al. Massive computational acceleration by using neural networks to emulate mechanism-based biological models. Nat Commun. 2019b;10:1 This study applies neural networks to a mechanistic PDE model of pattern formation in bacteria for prediction of spatial-temporal fields, they trained an LSTM for a PDE system that calculates cell and molecular concentrations for pattern formation in Escherichia coli.

Article  Google Scholar 

38.

Wang X, Zhao Y, Pourpanah F. Recent advances in deep learning. Int J Mach Learn Cybern. 2020;11:747–50.

Article  Google Scholar 

39.

Wang Y, Chao WL, Garg D, Hariharan B, Campbell M, Weinberger KQ. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019;8445–53.

40.

Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn. 1992;8:229–56.

Google Scholar 

41.

Ye W, Chen C, Wang Z, Chu IH, Ong SP. Deep neural networks for accurate predictions of crystal stability. Nat Commun. 2018.

42.

Zhang D, Guo L, Karniadakis GE. Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J Sci Comput. 2020;42:A639–65. https://doi.org/10.1137/19M1260141.

Article  Google Scholar 

43.

Zinski J, Bu Y, Wang X, Dou W, Umulis D, Mullins MC. Systems biology derived source-sink mechanism of BMP gradient formation. Elife. 2017;6:e22199.

44.

Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.2018;8697–710.

留言 (0)

沒有登入
gif