Angiogenesis in Wound Healing following Pharmacological and Toxicological Exposures

1.

Stechmiller JK. Understanding the role of nutrition and wound healing. Nutr Clin Pract. 2010;25(1):61–8.

PubMed  Google Scholar 

2.

Zinder R, Cooley R, Vlad LG, Molnar JA. Vitamin A and wound healing. Nutr Clin Pract. 2019;34(6):839–49.

PubMed  Google Scholar 

3.

Chiaverina G, di Blasio L, Monica V, Accardo M, Palmiero M, Peracino B, et al. Dynamic interplay between pericytes and endothelial cells during sprouting angiogenesis. Cells. 2019;8(9).

4.

Bazmara H, Soltani M, Sefidgar M, Bazargan M, Mousavi Naeenian M, Rahmim A. Blood flow and endothelial cell phenotype regulation during sprouting angiogenesis. Med Biol Eng Comput. 2016;54(2–3):547–58.

PubMed  Google Scholar 

5.

Gremmel T, Frelinger AL 3rd, Michelson AD. Platelet physiology. Semin Thromb Hemost. 2016;42(3):191–204.

CAS  PubMed  Google Scholar 

6.

Hvas AM. Platelet function in thrombosis and hemostasis. Semin Thromb Hemost. 2016;42(3):183–4.

PubMed  Google Scholar 

7.

Olas B, Bryś M. Effects of coffee, energy drinks and their components on hemostasis: the hypothetical mechanisms of their action. Food Chem Toxicol. 2019;127:31–41.

CAS  PubMed  Google Scholar 

8.

Varner JA. The sticky truth about angiogenesis and thrombospondins. J Clin Invest. 2006;116(12):3111–3.

CAS  PubMed  PubMed Central  Google Scholar 

9.

Rao SP, Sikora L, Hosseinkhani MR, Pinkerton KE, Sriramarao P. Exposure to environmental tobacco smoke induces angiogenesis and leukocyte trafficking in lung microvessels. Exp Lung Res. 2009;35(2):119–35.

CAS  PubMed  PubMed Central  Google Scholar 

10.

He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, et al. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. Environ Health Perspect. 2014;122(3):255–61.

CAS  PubMed  PubMed Central  Google Scholar 

11.

El-Masri H, Kleinstreuer N, Hines RN, Adams L, Tal T, Isaacs K, et al. Integration of life-stage physiologically based pharmacokinetic models with adverse outcome pathways and environmental exposure models to screen for environmental hazards. Toxicol Sci. 2016;152(1):230–43.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK, et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature. 2012;492(7428):252–5.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Sun X, Shi J, Zou X, Wang C, Yang Y, Zhang H. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater. 2016;317:570–8.

CAS  PubMed  Google Scholar 

14.

Li TH, Huang CC, Yang YY, Lee KC, Hsieh SL, Hsieh YC, et al. Thalidomide improves the intestinal mucosal injury and suppresses mesenteric angiogenesis and vasodilatation by down-regulating inflammasomes-related cascades in cirrhotic rats. PLoS One. 2016;11(1):e0147212.

PubMed  PubMed Central  Google Scholar 

15.

Kimball A, Schaller M, Joshi A, Davis FM, denDekker A, Boniakowski A, et al. Ly6C(Hi) blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2018;38(5):1102–14.

CAS  PubMed  PubMed Central  Google Scholar 

16.

McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330(6002):362–6.

CAS  PubMed  Google Scholar 

17.

Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc Endovasc Surg. 2005;39(4):293–306.

Google Scholar 

18.

Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol. 2008;28(11):1928–36.

CAS  PubMed  PubMed Central  Google Scholar 

19.

Steinritz D, Schmidt A, Balszuweit F, Thiermann H, Ibrahim M, Bölck B, et al. Assessment of endothelial cell migration after exposure to toxic chemicals. J Vis Exp. 2015;101:e52768.

Google Scholar 

20.

Ku YH, Cho BJ, Kim MJ, Lim S, Park YJ, Jang HC, et al. Rosiglitazone increases endothelial cell migration and vascular permeability through Akt phosphorylation. BMC Pharmacol Toxicol. 2017;18(1):62.

PubMed  PubMed Central  Google Scholar 

21.

• Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015;11(1):195–206. Nanoparticles act as therapeutic agents for wound healing.

22.

Ji C, Yue S, Gu J, Kong Y, Chen H, Yu C, et al. 2, 7-Dibromocarbazole interferes with tube formation in HUVECs by altering Ang2 promoter DNA methylation status. Sci Total Environ. 2019;697:134156.

CAS  PubMed  Google Scholar 

23.

Tanha S, Rafiee-Tehrani M, Abdollahi M, Vakilian S, Esmaili Z, Naraghi ZS, et al. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo. J Biomed Mater Res A. 2017;105(10):2830–42.

CAS  PubMed  Google Scholar 

24.

Zubair M. Prevalence and interrelationships of foot ulcer, risk-factors and antibiotic resistance in foot ulcers in diabetic populations: a systematic review and meta-analysis. World J Diabetes. 2020;11(3):78–89.

PubMed  PubMed Central  Google Scholar 

25.

Ren X, Han Y, Wang J, Jiang Y, Yi Z, Xu H, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery-an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. 2018;70:140–53.

CAS  PubMed  Google Scholar 

26.

Gorgulho CM, Romagnoli GG, Bharthi R, Lotze MT. Johnny on the spot-chronic inflammation is driven by HMGB1. Front Immunol. 2019;10:1561.

CAS  PubMed  PubMed Central  Google Scholar 

27.

Tenkate T, Adam B, Al-Rifai RH, Chou BR, Gobba F, Ivanov ID, et al. WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of occupational exposure to solar ultraviolet radiation and of the effect of occupational exposure to solar ultraviolet radiation on cataract. Environ Int 2019.

28.

Hasan H, Muhammed T, Yu J, Taguchi K, Samargandi OA, Howard AF, et al. Assessing the methodological quality of systematic reviews in radiation oncology: a systematic review. Cancer Epidemiol. 2017;50(Pt A):141–9.

PubMed  Google Scholar 

29.

D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.

PubMed  PubMed Central  Google Scholar 

30.

Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation–a review. Int J Cosmet Sci. 2005;27(1):17–34.

CAS  PubMed  Google Scholar 

31.

Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, et al. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomed. 2015;10:6477–91.

CAS  Google Scholar 

32.

Yu BB, Zhi H, Zhang XY, Liang JW, He J, Su C, et al. Mitochondrial dysfunction-mediated decline in angiogenic capacity of endothelial progenitor cells is associated with capillary rarefaction in patients with hypertension via downregulation of CXCR4/JAK2/SIRT5 signaling. EBioMedicine. 2019;42:64–75.

PubMed  PubMed Central  Google Scholar 

33.

Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555–65.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Trend S, Jones AP, Cha L, Cooper MN, Geldenhuys S, Fabis-Pedrini MJ, et al. Short-term changes in frequencies of circulating leukocytes associated with narrowband UVB phototherapy in people with clinically isolated syndrome. Sci Rep. 2019;9(1):7980.

PubMed  PubMed Central  Google Scholar 

35.

McGonigle TA, Keane KN, Ghaly S, Carter KW, Anderson D, Scott NM, et al. UV irradiation of skin enhances glycolytic flux and reduces migration capabilities in bone marrow-differentiated dendritic cells. Am J Pathol. 2017;187(9):2046–59.

CAS  PubMed  Google Scholar 

36.

Bearden JA. X-ray wavelengths. Rev Mod Phys. 1967;39(1):78.

CAS  Google Scholar 

37.

Yang Y, Zhang L, Cai J, Li X, Cheng D, Su H, et al. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl Mater Interfaces. 2016;8(3):1718–32.

CAS  PubMed  Google Scholar 

38.

Martin BJ. Inhibiting vasculogenesis after radiation: a new paradigm to improve local control by radiotherapy. Semin Radiat Oncol. 2013;23(4):281–7.

PubMed  Google Scholar 

39.

• Powathil GG, Munro AJ, Chaplain MA, Swat M. Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments. J Theor Biol. 2016;401:1–14. Bystander responses are key in mediating radiation damage to cells at low-doses of radiotherapy.

40.

Jabbari N, Nawaz M, Rezaie J. Bystander effects of ionizing radiation: conditioned media from X-ray irradiated MCF-7 cells increases the angiogenic ability of endothelial cells. Cell Commun Signal. 2019;17(1):165.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Zhao C, Wang H, Xiong C, Liu Y. Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem Biophys Res Commun. 2018;502(3):324–31.

CAS  PubMed  Google Scholar 

42.

Marques FG, Poli E, Rino J, Pinto MT, Diegues I, Pina F, et al. Low doses of ionizing radiation enhance the angiogenic potential of adipocyte conditioned medium. Radiat Res. 2019;192(5):517–26.

CAS  PubMed  Google Scholar 

43.

Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep. 2016;6:18765.

PubMed  PubMed Central  Google Scholar 

44.

Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci. 2019;76(4):699–728.

CAS  PubMed  Google Scholar 

45.

Donneys A, Nelson NS, Perosky JE, Polyatskaya Y, Rodriguez JJ, Figueredo C, et al. Prevention of radiation-induced bone pathology through combined pharmacologic cytoprotection and angiogenic stimulation. Bone. 2016;84:245–52.

CAS  PubMed  Google Scholar 

46.

González-González A, González A, Rueda N, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, et al. Melatonin enhances the usefulness of ionizing radiation: involving the regulation of different steps of the angiogenic process. Front Physiol. 2019;10:879.

PubMed  PubMed Central 

留言 (0)

沒有登入
gif