Mathematical Modeling and Simulations for Developing Nanoparticle-Based Cancer Drug Delivery Systems: A Review

1.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

2.

Sahai N, Ahmad N, Gogoi M. Nanoparticles based drug delivery for tissue regeneration using biodegradable scaffolds: a review. Curr Pathobiol Rep. 2018;6:219–24.

CAS  Article  Google Scholar 

3.

Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38. https://doi.org/10.1021/ar200019c.

CAS  Article  PubMed  Google Scholar 

4.

Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12:958–62.

CAS  Article  Google Scholar 

5.

Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular Nanomedicine Towards Cancer : J Pharm Sci. 2012;101:2271–80. https://doi.org/10.1002/jps.

CAS  Article  PubMed  Google Scholar 

6.

Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81. https://doi.org/10.1021/acsnano.6b06040.

CAS  Article  PubMed  PubMed Central  Google Scholar 

7.

van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–17. https://doi.org/10.1038/s41565-019-0567-y.

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.

CAS  Article  Google Scholar 

9.

Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8:290–312.

CAS  Article  Google Scholar 

10.

Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20.

11.

Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, et al. Application of fullerenes in nanomedicine: an update. Nanomedicine. 2013;8:1191–208.

CAS  Article  Google Scholar 

12.

Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4:94. https://doi.org/10.1007/s40089-014-0094-7.

CAS  Article  Google Scholar 

13.

Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett. 2014;158:167–74.

CAS  Article  Google Scholar 

14.

Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171:3963–79.

CAS  Article  Google Scholar 

15.

Moss DM, Siccardi M (2014) Optimising nanomedicine pharmacokinetics using PBPK modelling. Br J Pharmacol 44:n/a-n/a.

16.

Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2.

CAS  Article  PubMed  Google Scholar 

17.

• Dogra P, Butner JD, Chuang Y li, et al (2019) Mathematical modeling in cancer nanomedicine: a review Biomed Microdev 21: . doi: https://doi.org/10.1007/s10544-019-0380-2

18.

•• Shamsi M, Mohammadi A, Manshadi MKD, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release. 2019;307:150–65.

CAS  Article  Google Scholar 

19.

Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43.

CAS  Article  Google Scholar 

20.

Clancy CE, An G, Cannon WR, Liu Y, May EE, Ortoleva P, et al. Multiscale modeling in the clinic: drug design and development. Ann Biomed Eng. 2016;44:2591–610. https://doi.org/10.1007/s10439-016-1563-0.

Article  PubMed  PubMed Central  Google Scholar 

21.

Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Synthesis, biological studies and molecular dynamics of new anticancer RGD-based peptide conjugates for targeted drug delivery. Bioorg Med Chem. 2016;24:294–303. https://doi.org/10.1016/j.bmc.2015.12.020.

CAS  Article  PubMed  Google Scholar 

22.

Mansoorinasab A, Morsali A, Heravi MM, Beyramabadi SA (2015) Quantum mechanical study on the adsorption of drug gentamicin onto aγ-Fe2 O3 nanoparticles. Orient J Chem 31:1509–1513 . doi: https://doi.org/10.13005/ojc/310329

23.

Xu Z, Wu GM, Li Q, et al. Predictive value of combined LIPS and ANG-2 level in critically ill patients with ARDS risk factors. Mediators Inflamm 2018. 2018. https://doi.org/10.1155/2018/1739615.

24.

Forouzandehmehr M, Shamloo A. Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design. Biomech Model Mechanobiol. 2018;17:205–21. https://doi.org/10.1007/s10237-017-0955-x.

Article  PubMed  Google Scholar 

25.

Bozsak F, Chomaz JM, Barakat AI. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech Model Mechanobiol. 2014;13:327–47. https://doi.org/10.1007/s10237-013-0546-4.

Article  PubMed  Google Scholar 

26.

Liu Y, Shah S, Tan J. Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol. 2012;1:66–83. https://doi.org/10.1166/rnn.2012.1014.

CAS  Article  Google Scholar 

27.

Hossain SS, Hossainy SFA, Bazilevs Y, Calo VM, Hughes TJR. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech. 2012;49:213–42. https://doi.org/10.1007/s00466-011-0633-2.

Article  Google Scholar 

28.

Priyadharshini S, Ponalagusamy R. An unsteady flow of magnetic nanoparticles as drug carrier suspended in micropolar fluid through a porous tapered arterial stenosis under non-uniform magnetic field and periodic body acceleration. Comput Appl Math. 2018;37:4259–80. https://doi.org/10.1007/s40314-018-0572-z.

Article  Google Scholar 

29.

Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58:1274–325.

CAS  Article  Google Scholar 

30.

Iordanskii AL, Feldstein MM, Markin VS, Hadgraft J, Plate NA. Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane. Eur J Pharm Biopharm. 2000;49:287–93. https://doi.org/10.1016/S0939-6411(00)00063-1.

CAS  Article  PubMed  Google Scholar 

31.

Swierniak A, Kimmel M, Smieja J. Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol. 2009;625:108–21.

CAS  Article  Google Scholar 

32.

Wang Z, Deisboeck TS. Mathematical modeling in cancer drug discovery. Drug Discov Today. 2014;19:145–50.

Article  Google Scholar 

33.

Sanga S, Sinek JP, Frieboes HB, Ferrari M, Fruehauf JP, Cristini V. Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev Anticancer Ther. 2006;6:1361–76. https://doi.org/10.1586/14737140.6.10.1361.

CAS  Article  PubMed  Google Scholar 

34.

Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform. 2017;19:1382–99. https://doi.org/10.1093/bib/bbx065.

CAS  Article  PubMed Central  Google Scholar 

35.

Kim MJ, Gillies RJ, Rejniak KA (2013) Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3 NOV.

36.

Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. Cancer evolution: mathematical models and computational inference. Syst Biol. 2015;64:e1–e25. https://doi.org/10.1093/sysbio/syu081.

CAS  Article  PubMed  Google Scholar 

37.

Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9.

38.

Serre R, Benzekry S, Padovani L, et al. Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy. In: Cancer Research; 2016. p. 4931–40.

Google Scholar 

39.

Leder K, Pitter K, Laplant Q, et al. Mathematical modeling of pdgf-driven glioblastoma reveals optimized radiation dosing schedules. Cell. 2014;156:603–16. https://doi.org/10.1016/j.cell.2013.12.029.

CAS  Article  PubMed  PubMed Central  Google Scholar 

40.

Dell’Orco D, Lundqvist M, Oslakovic C, et al. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One. 2010;5:e10949. https://doi.org/10.1371/journal.pone.0010949.

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

Dell’Orco D, Lundqvist M, Cedervall T, Linse S. Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomedicine. 2012;8:1271–81. https://doi.org/10.1016/j.nano.2012.02.006.

CAS  Article  PubMed  Google Scholar 

42.

Darabi Sahneh F, Scoglio C, Riviere J. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS One. 2013;8:e64690. https://doi.org/10.1371/journal.pone.0064690.

CAS  Article  PubMed  PubMed Central  Google Scholar 

43.

Lopez H, Lobaskin V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys. 2015:143. https://doi.org/10.1063/1.4936908.

44.

Tavanti F, Pedone A, Menziani MC. A closer look into the ubiquitin corona on gold nanoparticles by computational studies. New J Chem. 2015;39:2474–82. https://doi.org/10.1039/c4nj01752h.

CAS  Article  Google Scholar 

45.

Gentile F, Ferrari M, Decuzzi P. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng. 2008;36:254–61. https://doi.org/10.1007/s10439-007-9423-6.

Article  PubMed  Google Scholar 

46.

Tsoi KM, Macparland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15:1212–21. https://doi.org/10.1038/nmat4718.

CAS  Article  PubMed  PubMed Central  Google Scholar 

47.

Lee TR, Choi M, Kopacz AM, Yun SH, Liu WK, Decuzzi P. On the near-wall accumulation of injectable parti

留言 (0)

沒有登入
gif