Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila

1. World Health Organization . Global status report on alcohol and health 2018. World Health Organization; 2019.
Google Scholar2. Most, D, Ferguson, L, Harris, RA. Molecular basis of alcoholism. In: Handbook of clinical neurology. Vol 125. Elsevier; 2014:89-111.
Google Scholar3. Moore, MS, DeZazzo, J, Luk, AY, Tully, T, Singh, CM, Heberlein, U. Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell. 1998;93(6):997-1007.
Google Scholar | Crossref | Medline4. Devineni, AV, Heberlein, U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci. 2013;36:121-138.
Google Scholar | Crossref | Medline5. Devineni, AV, Heberlein, U. Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol. 2009;19(24):2126-2132.
Google Scholar | Crossref | Medline6. Peru, YP, Ojelade, SA, Penninti, PS, et al. Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol. 2014;19(3):392-401.
Google Scholar | Crossref | Medline7. Park, A, Tran, T, Scheuermann, EA, Smith, DP, Atkinson, NS. Alcohol potentiates a pheromone signal in flies. Elife. 2020;9:e59853.
Google Scholar | Crossref8. Kaun, KR, Azanchi, R, Maung, Z, Hirsh, J, Heberlein, U. A drosophila model for alcohol reward. Nat Neurosci. 2011;14(5):612-619.
Google Scholar | Crossref | Medline9. Lee, HG, Kim, YC, Dunning, JS, Han, KA. Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS One. 2008;3(1):e1391.
Google Scholar | Crossref10. Scholz, H, Ramond, J, Singh, CM, Heberlein, U. Functional ethanol tolerance in Drosophila. Neuron. 2000;28(1):261-271.
Google Scholar | Crossref | Medline11. Ghezzi, A, Krishnan, HR, Atkinson, NS. Susceptibility to ethanol withdrawal seizures is produced by BK channel gene expression. Addict Biol. 2014;19(3):332-337.
Google Scholar | Crossref | Medline12. Berger, KH, Kong, EC, Dubnau, J, Tully, T, Moore, MS, Heberlein, U. Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin Exp Res. 2008;32(5):895-908.
Google Scholar | Crossref | Medline13. Kaun, KR, Devineni, AV, Heberlein, U. Drosophila melanogaster as a model to study drug addiction. Hum Genet. 2012;131(6):959-975.
Google Scholar | Crossref | Medline14. Park, A, Ghezzi, A, Wijesekera, TP, Atkinson, NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology. 2017;122:22-35.
Google Scholar | Crossref | Medline15. Rodan, AR, Rothenfluh, A. The genetics of behavioral alcohol responses in Drosophila. Int Rev Neurobiol. 2010;91:25-51.
Google Scholar | Crossref | Medline16. Sahara, S, Yanagawa, Y, O’Leary, DD, Stevens, CF. The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. Journal of Neuroscience. 2012;32(14):4755-4761.
Google Scholar | Crossref | Medline17. Davie, K, Janssens, J, Koldere, D, et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell. 2018;174(4):982-998.
Google Scholar | Crossref | Medline18. Enoch, M-A. The role of GABAA receptors in the development of alcoholism. Pharmacol Biochem Behav. 2008;90(1):95-104.
Google Scholar | Crossref | Medline19. Olsen, RW. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands. Neurochem Res. 2014;39(10):1924-1941.
Google Scholar | Crossref | Medline20. Stephens, DN, King, SL, Lambert, JJ, Belelli, D, Duka, T. GABAA receptor subtype involvement in addictive behaviour. Genes Brain Behav. 2017;16(1):149-184.
Google Scholar | Crossref | Medline21. Grobin, AC, Matthews, DB, Devaud, LL, Morrow, AL. The role of GABAA receptors in the acute and chronic effects of ethanol. Psychopharmacology. 1998;139(1-2):2-19.
Google Scholar | Crossref | Medline22. Hu, Y, Flockhart, I, Vinayagam, A, et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinf. 2011;12(1):357.
Google Scholar | Crossref | Medline23. Graveley, BR, Brooks, AN, Carlson, JW, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473-479.
Google Scholar | Crossref | Medline24. Lee, D, Su, H, O’Dowd, DK. GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. J Neurosci. 2003;23(11):4625-4634.
Google Scholar | Crossref | Medline25. Aronstein, K, Ffrench-Constant, R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invert Neurosci. 1995;1(1):25-31.
Google Scholar | Crossref | Medline26. Stilwell, GE, Saraswati, S, Littleton, JT, Chouinard, SW. Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur J Neurosci. 2006;24(8):2211-2222.
Google Scholar | Crossref | Medline27. Agabio, R, Colombo, G. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci. 2014;8:140.
Google Scholar | Crossref | Medline28. Zhang, S, Xue, L, Liu, X, et al. Structural basis for distinct quality control mechanisms of GABAB receptor during evolution. FASEB J. 2020;34(12):16348-16363.
Google Scholar | Crossref | Medline29. Okada, R, Awasaki, T, Ito, K. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol. 2009;514(1):74-91.
Google Scholar | Crossref | Medline30. Dzitoyeva, S, Dimitrijevic, N, Manev, H. γ-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci. 2003;100(9):5485-5490.
Google Scholar | Crossref | Medline31. Ranson, DC, Ayoub, SS, Corcoran, O, Casalotti, SO. Pharmacological targeting of the GABAB receptor alters Drosophila’s behavioural responses to alcohol. Addict Biol. 2020;25(2):e12725.
Google Scholar | Crossref | Medline32. Manev, H, Dzitoyeva, S. GABA-B receptors in Drosophila. In: Advances in Pharmacology. Vol 58. Elsevier; 2010:453-464.
Google Scholar | Crossref33. Kim, M, Jang, D, Yoo, E, et al. Rogdi defines GABAergic control of a wake-promoting dopaminergic pathway to sustain sleep in Drosophila. Sci Rep. 2017;7(1):1-14.
Google Scholar | Medline34. Rao, PS, Bell, RL, Engleman, EA, Sari, Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. 2015;9:144.
Google Scholar | Crossref | Medline35. Carboni, S, Isola, R, Gessa, G, Rossetti, Z. Ethanol prevents the glutamate release induced by N-methyl-D-aspartate in the rat striatum. Neurosci Lett. 1993;152(1-2):133-136.
Google Scholar | Crossref | Medline36. Rossetti, ZL, Carboni, S. Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol. 1995;283(1-3):177-183.
Google Scholar | Crossref | Medline37. Zhou, Y, Danbolt, NC. GABA and glutamate transporters in brain. Front Endocrinol. 2013;4:165.
Google Scholar | Crossref | Medline38. Goodwani, S, Saternos, H, Alasmari, F, Sari, Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev. 2017;77:14-31.
Google Scholar | Crossref | Medline39. Xia, S, Chiang, A-S. NMDA receptors in Drosophila. In: Biology of the NMDA Receptor. CRC Press/Taylor & Francis; 2009.
Google Scholar40. Maiya, R, Lee, S, Berger, KH, et al. DlgS97/SAP97, a neuronal isoform of discs large, regulates ethanol tolerance. PLoS One. 2012;7(11):e48967.
Google Scholar | Crossref41. Troutwine, B, Park, A, Velez-Hernandez, ME, Lew, L, Mihic, SJ, Atkinson, NS. F654A and K558Q mutations in NMDA receptor 1 affect ethanol-induced behaviors in Drosophila. Alcohol Clin Exp Res. 2019;43(12):2480-2493.
Google Scholar | Crossref | Medline42. Schoenfeld, BP, Choi, RJ, Choi, CH, et al. The Drosophila DmGluRA is required for social interaction and memory. Front Pharmacol. 2013;4:64.
Google Scholar | Crossref | Medline43. Urizar, NL, Yang, Z, Edenberg, HJ, Davis, RL. Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci. 2007;27(17):4541-4551.
Google Scholar | Crossref | Medline44. Castelli, V, Brancato, A, Cavallaro, A, Lavanco, G, Cannizzaro, C. Homer2 and alcohol: a mutual interaction. Frontiers in psychiatry. 2017;8:268.
Google Scholar | Crossref | Medline45. Chinta, SJ, Andersen, JK. Dopaminergic neurons. Int J Biochem Cell Biol. 2005;37(5):942-946.
Google Scholar | Crossref | Medline46. Mao, Z, Davis, RL. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits. 2009;3:5.
Google Scholar | Crossref | Medline47. Chu, H-Y, Zhen, X. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels in the regulation of midbrain dopamine systems. Acta Pharmacol Sin. 2010;31(9):1036-1043.
Google Scholar | Crossref | Medline48. Gagnon, D, Petryszyn, S, Sanchez, M, et al. Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep. 2017;7(1):1-16.
Google Scholar | Crossref | Medline49. Mercuri, N, Saiardi, A, Bonci, A, et al. Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience. 1997;79(2):323-327.
Google Scholar | Medline50. Volkow, ND, Fowler, JS, Wang, G-J, Swanson, JM, Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64(11):1575-1579.
Google Scholar | Crossref | Medline51. Volkow, ND, Wang, G-J, Begleiter, H, et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006;63(9):999-1008.
Google Scholar | Crossref | Medline52. Hodge, CW, Samson, HH, Chappelle, AM. Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res. 1997;21(6):1083-1091.
Google Scholar | Medline53. Corbit, LH, Nie, H, Janak, PH. Habitual responding for alcohol depends upon both AMPA and D2 receptor signaling in the dorsolateral striatum. Front Behav Neurosci. 2014;8:301.
Google Scholar | Crossref | Medline54. Thanos, PK, Volkow, ND, Freimuth, P, et al. Overexpression of dopamine D2

Comments (0)

No login
gif