Toxicology of Nanoparticles in Drug Delivery

1.

Khana I, Saeed K, IdreesKhan. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019; 908–93. https://doi.org/10.1016/j.arabjc.2017.05.011.

2.

Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–16. https://doi.org/10.1016/j.msec.2017.05.135.

CAS  Article  Google Scholar 

3.

Zahin Nuzhat, Anwar Raihanatul, Tewari Devesh, Kabir MT, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res. 2019;27:19151–68. https://doi.org/10.1007/s11356-019-05211-0.

CAS  Article  Google Scholar 

4.

Hasan A, Morshed M, Memic A, Hassan S, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. 2018:13: 5637–5655. https://doi.org/10.2147/IJN.S153758.

5.

Prasad M, Lambe UP, Brar B, lShah I, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in the medical sector of the modern world 2018:97: 1521–1537. https://doi.org/10.1016/j.biopha.2017.11.026.

6.

Nikolova M, Chavali M. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27. https://doi.org/10.3390/biomimetics5020027.

CAS  Article  PubMed Central  Google Scholar 

7.

Patra J, Das G, Fraceto L, Campos E, Rodriguez-Torres M, Acosta-Torres L, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1). https://doi.org/10.1186/s12951-018-0392-8.

8.

De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–49. https://doi.org/10.2147/ijn.s596.

Article  Google Scholar 

9.

Pasut G. Grand challenges in nano-based drug delivery. Front Med Technol. 2019;1(1). https://doi.org/10.3389/fmedt.2019.00001.

10.

Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, et al. Minimum information reporting in bio–nano experimental literature. Nat Nanotechnol. 2018;13:777–85. https://doi.org/10.1038/s41565-018-0246-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

11.

Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomed. 2019;14:10179–94. https://doi.org/10.2147/IJN.S220087.

CAS  Article  Google Scholar 

12.

Wong B, Yoong S, Jagusiak A, Panczyk T, Ho H, Ang W, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015. https://doi.org/10.1016/j.addr.2013.08.005.

CAS  Article  PubMed  Google Scholar 

13.

Singh B, Lohan S, Sandhu P, Jain A, Mehta S. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. Nanobiomater Med Imaging. 2016;455–478. https://doi.org/10.1016/B978-0-323-41736-5.00015-7.

14.

Saifuddin N, Raziah A, Junizah A. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013:1–18. https://doi.org/10.1155/2013/676815.

15.

Jin H, Heller D, Strano M. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008;8(6):1577–85.

Article  Google Scholar 

16.

Gholamine B, Karimi I, Salimi A, et al. Neurobehavioral toxicity of carbon nanotubes in mice. Toxicol Ind Health. 2017;33:340–50. https://doi.org/10.1177/0748233716644381.

CAS  Article  PubMed  Google Scholar 

17.

Chen H, Zheng X, Nicholas J, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza virus titers in mice. Virol J. 2017;14:242. https://doi.org/10.1186/s12985-017-0909-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

18.

Park EJ, Choi J, Kim JH, et al. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology. 2016;10:1188–202. https://doi.org/10.1080/17435390.2016.1202348.

CAS  Article  PubMed  Google Scholar 

19.

Lee S, Khang D, Kim S-H. High dispersity of carbon nanotubes diminishes immunotoxicity in the spleen. Int J Nanomed. 2015;10:2697–710.

CAS  Article  Google Scholar 

20.

Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160:121–6. https://doi.org/10.1016/j.toxlet.2005.06.020.

CAS  Article  PubMed  Google Scholar 

21.

Larner SF, Wang J, Goodman J, et al. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J Cell Death. 2017;10:1179670717694523. https://doi.org/10.1177/1179670717694523.

Article  PubMed  PubMed Central  Google Scholar 

22.

Aragon MJ, Topper L, Tyler CR, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968–76. https://doi.org/10.1073/pnas.1616070114.

CAS  Article  PubMed  PubMed Central  Google Scholar 

23.

Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, et al. Size effects of single-walled carbon nanotubes on in-vivo and in-vitro pulmonary toxicity. Inhalation Toxicol. 2015;27(4):207–23. https://doi.org/10.3109/08958378.2015.1026620.

CAS  Article  Google Scholar 

24.

Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017;59(5):394–407. https://doi.org/10.1539/joh.17-0089-RA.

CAS  Article  PubMed  PubMed Central  Google Scholar 

25.

Shang S, Yang S, Liu Z, Yang X. Oxidative damage in the kidney and brain of mice induced by different nano-materials. Frontiers in Biology. 2015;10(1):91–6. https://doi.org/10.1007/s11515-015-1345-3.

CAS  Article  Google Scholar 

26.

•• Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H et al. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Reports. 2018;8:8375. https://doi.org/10.1038/s41598-018-26790-x. In this study, Researchers evaluated the toxicology of SWCNTs and MWCNTs and a typical animal model of breast cancer in order to gain insights into the effects of CNTs on MC4L2 cells and mice. As a result, this study has high scientific value since the authors address the toxicity of carbon nanotubes to humans at high doses as CNTs at high doses cause inflammation in the liver and spleen. In addition, they also address the cardiovascular and neurotoxicity of carbon nanotubes. Using SWCNTs as a model for carbon nanoparticles, the paper briefly.

27.

Cao Y, Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to the vascular system: a review. Toxicol Appl Pharmacol. 2019;385: 114801. https://doi.org/10.1016/j.taap.2019.114801.

CAS  Article  PubMed  Google Scholar 

28.

Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Can Res. 2008;68(16):6652–60. https://doi.org/10.1158/0008-5472.CAN-08-1468.

CAS  Article  Google Scholar 

29.

Madkour LH, et al. Toxicological considerations of clinically applicable nanoparticles. Nucleic Acids Gene Anticancer Drug Deliv Ther. 2019:425–483. https://doi.org/10.1016/b978-0-12-819777-6.00019-6.

30

Bakhtiary Z, Saei A, Hajipour M, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed Nanotechnol Biol Med. 2016;12(2):287–307. https://doi.org/10.1016/j.nano.2015.10.019.

CAS  Article  Google Scholar 

31.

Veranth J, Kaser E, Veranth M, Koch M, Yost G. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. 2007;4(1):2. https://doi.org/10.1186/1743-8977-4-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

32.

Häfeli U, Riffle J, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey J, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6(5):1417–28. https://doi.org/10.1021/mp900083m.

CAS  Article  PubMed  Google Scholar 

33.

Jeng H, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A. 2006;41(12):2699–711. https://doi.org/10.1080/10934520600966177.

CAS  Article  Google Scholar 

34.

Bobo D, Robinson K, Islam J, Thurecht K, Corrie S. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.

CAS  Article  PubMed  Google Scholar 

35.

Thakor A, Jokerst J, Ghanouni P, Campbell J, Mittra E, Gambhir S. Clinically approved nanoparticle imaging agents. J Nucl Med. 2016;57(12):1833–7. https://doi.org/10.2967/jnumed.116.181362.

CAS  Article  PubMed  PubMed Central  Google Scholar 

36.

Wang Y. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400. https://doi.org/10.3748/wjg.v21.i47.13400.

CAS  Article  PubMed  PubMed Central  Google Scholar 

37.

Vakili-Ghartavol R, Momtazi-Borojeni A, Vakili-Ghartavol Z, Aiyelabegan H, Jaafari M, Rezayat S, et al. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif Cells Nanomed Biotechnol. 2020;48(1):443–51. https://doi.org/10.1080/21691401.2019.1709855.

CAS  Article  PubMed  Google Scholar 

38.

Banda N, Mehta G, Chao Y, Wang G, Inturi S, Fossati-Jimack L, et al. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Part Fibre Toxicol. 2014;11(1):64. https://doi.org/10.1186/s12989-014-0064-2.

CAS  Article  PubMed  PubMed Central  Google Scholar 

39.

Drugs@FDA: FDA-Approved Drugs [Internet]. Accessdata.fda.gov. 2021 [cited 6 June 2021]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.processand ApplNo=020416

40.

Benasutti H, Wang G, Vu V, Scheinman R, Groman E, Saba L, et al. Variability of complement response toward preclinical and clinical nanocarriers in the general population. Bioconjug Chem. 2017;28(11):2747–55. https://doi.org/10.1021/acs.bioconjchem.7b00496.

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

Ameta S. Advanced oxidation processes for wastewater treatment (2018)

42.

Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials. 2019;12(4):617. https://doi.org/10.3390/ma12040617.

CAS  Article  PubMed Central  Google Scholar 

43.

Unterweger H, Dézsi L, Matuszak J, Janko C, Poettler M, Jordan J, et al. Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int J Nanomed. 2018;13:1899–915. https://doi.org/10.2147/IJN.S156528.

CAS  Article  Google Scholar 

44.

Ferretti A, Usseglio S, Mondini S, Drago C, La Mattina R, Chini B, et al. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci. 2021;582:678–700. https://doi.org/10.1016/j.jcis.2020.08.026.

CAS  Article  PubMed  Google Scholar 

45.

Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2014;44(1):381–91. https://doi.org/10.3109/21691401.2014.953633.

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif