Cortical mechanisms in migraine

1. Headache Classification Committee of the International Headache Society (IHS) . The international classification of headache disorders, 3rd edition. Cephalalgia 2018; 38: 1–211.
Google Scholar | SAGE Journals2. Liu, R, Yu, S, He, M, et al. Health-care utilization for primary headache disorders in China: a population-based door-to-door survey. J Headache Pain 2013; 14: 47.
Google Scholar | Crossref | Medline | ISI3. Yu, S, Liu, R, Zhao, G, et al. The prevalence and burden of primary headaches in China: a population-based door-to-door survey. Headache 2012; 52: 582–591.
Google Scholar | Crossref | Medline | ISI4. Yu, S, He, M, Liu, R, et al. Headache yesterday in China: a new approach to estimating the burden of headache, applied in a general-population survey in China. Cephalalgia 2013; 33: 1211–1217.
Google Scholar | SAGE Journals | ISI5. GDB 2016 Headache Collaborators . Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17: 954–976.
Google Scholar | Crossref | Medline6. Kelman, L . The triggers or precipitants of the acute migraine attack. Cephalalgia 2007; 27: 394–402.
Google Scholar | SAGE Journals | ISI7. Villalon, CM, Centurion, D, Valdivia, LF, et al. Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol 2003; 1: 71–84.
Google Scholar | Crossref | Medline8. Liu, H, Ge, H, Xiang, J, et al. Resting state brain activity in patients with migraine: a magnetoencephalography study. J Headache Pain 2015; 16: 525.
Google Scholar | Crossref | Medline9. Dong, Z, Jiang, L, Wang, X, et al. Nociceptive behaviors were induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious adult rats and reduced by morphine and rizatriptan benzoate. Brain Res 2011; 1368: 151–158.
Google Scholar | Crossref | Medline10. Cieslak, M, Czarnecka, J, Roszek, K, et al. The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 2015; 11: 307–316.
Google Scholar | Crossref | Medline11. Zhuo, M . A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol Cells 2007; 23: 259–271.
Google Scholar | Medline12. Shackman, AJ, Salomons, TV, Slagter, HA, et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 2011; 12: 154–167.
Google Scholar | Crossref | Medline | ISI13. Zhuo, M . Cortical excitation and chronic pain. Trends Neurosci 2008; 31: 199–207.
Google Scholar | Crossref | Medline | ISI14. Vogt, BA . Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 2005; 6: 533–544.
Google Scholar | Crossref | Medline | ISI15. Chen, Z, Chen, X, Liu, M, et al. Volume expansion of periaqueductal gray in episodic migraine: a pilot MRI structural imaging study. J Headache Pain 2017; 18: 83.
Google Scholar | Crossref | Medline16. Chen, Z, Chen, X, Liu, M, Liu, S, Ma, L, Yu, S, et al. Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine. J Headache Pain 2017; 18: 36.
Google Scholar | Crossref | Medline17. Dahlke, LA, Sable, JJ, Andrasik, F. Behavioral therapy: emotion and pain, a common anatomical background. Neurol Sci 2017; 38: 157–161.
Google Scholar | Crossref | Medline18. Chen, T, Taniguchi, W, Chen, QY, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat Commun 2018; 9: 1886.
Google Scholar | Crossref | Medline19. Tang, J, Ko, S, Ding, HK, et al. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain 2005; 1: 6.
Google Scholar | SAGE Journals20. Bliss, TV, Collingridge, GL, Kaang, BK, et al. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 2016; 17: 485–496.
Google Scholar | Crossref | Medline | ISI21. Maleki, N, Becerra, L, Brawn, J, et al. Concurrent functional and structural cortical alterations in migraine. Cephalalgia 2012; 32: 607–620.
Google Scholar | SAGE Journals | ISI22. Jin, C, Yuan, K, Zhao, L, et al. Structural and functional abnormalities in migraine patients without aura. NMR Biomed 2013; 26: 58–64.
Google Scholar | Crossref | Medline | ISI23. Chen, Z, Chen, X, Liu, M, et al. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain 2017; 18: 7.
Google Scholar | Crossref | Medline24. Mainero, C, Boshyan, J, Hadjikhani, N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70: 838–845.
Google Scholar | Crossref | Medline | ISI25. Matharu, MS, Bartsch, T, Ward, N, et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain 2004; 127: 220–230.
Google Scholar | Crossref | Medline | ISI26. Magis, D, D'Ostilio, K, Thibaut, A, et al. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalalgia 2017; 37: 881–891.
Google Scholar | SAGE Journals | ISI27. Becerra, L, Veggeberg, R, Prescot, A, et al. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. Neuroimage Clin 2016; 11: 588–594.
Google Scholar | Crossref | Medline28. Niddam, DM, Lai, KL, Tsai, SY, et al. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2018; 141: 377–390.
Google Scholar | Crossref | Medline29. Jaggi, AS, Singh, N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011; 1381: 187–201.
Google Scholar | Crossref | Medline | ISI30. Cauda, F, D'Agata, F, Sacco, K, et al. Functional connectivity of the insula in the resting brain. Neuroimage 2011; 55: 8–23.
Google Scholar | Crossref | Medline | ISI31. Frot, M, Faillenot, I, Mauguiere, F. Processing of nociceptive input from posterior to anterior insula in humans. Hum Brain Mapp 2014; 35: 5486–5499.
Google Scholar | Crossref | Medline | ISI32. Borsook, D, Veggeberg, R, Erpelding, N, et al. The insula: a "Hub of Activity" in Migraine. Neuroscientist 2016; 22: 632–652.
Google Scholar | SAGE Journals | ISI33. Lai, KL, Niddam, DM, Fuh, JL, et al. Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses. Cephalalgia 2020; 40: 575–585.
Google Scholar | SAGE Journals | ISI34. Maleki, N, Barmettler, G, Moulton, EA, et al. Female migraineurs show lack of insular thinning with age. Pain 2015; 156: 1232–1239.
Google Scholar | Crossref | Medline | ISI35. Tso, AR, Trujillo, A, Guo, CC, et al. The anterior insula shows heightened interictal intrinsic connectivity in migraine without aura. Neurology 2015; 84: 1043–1050.
Google Scholar | Crossref | Medline | ISI36. Coppola, G, Di Renzo, A, Tinelli, E, et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2018; 38: 846–854.
Google Scholar | SAGE Journals | ISI37. Schwedt, TJ, Schlaggar, BL, Mar, S, et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53: 737–751.
Google Scholar | Crossref | Medline | ISI38. Vereb, D, Szabo, N, Tuka, B, et al. Temporal instability of salience network activity in migraine with aura. Pain 2020; 161: 856–864.
Google Scholar | Crossref | Medline39. Xue, T, Yuan, K, Zhao, L, et al. Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One 2012; 7: e52927.
Google Scholar | Crossref | Medline | ISI40. Afridi, SK, Giffin, NJ, Kaube, H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol 2005; 62: 1270–1275.
Google Scholar | Crossref | Medline41. Afridi, SK, Matharu, MS, Lee, L, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 2005; 128: 932–939.
Google Scholar | Crossref | Medline | ISI42. Maniyar, FH, Sprenger, T, Monteith, T, et al. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 2014; 137: 232–241.
Google Scholar | Crossref | Medline | ISI43. Shin, JH, Kim, YK, Kim, HJ, et al. Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings. Cephalalgia 2014; 34: 58–67.
Google Scholar | SAGE Journals | ISI44. Rempel-Clower, NL . Role of orbitofrontal cortex connections in emotion. Ann N Y Acad Sci 2007; 1121: 72–86.
Google Scholar | Crossref | Medline45. Lieberman, MD, Jarcho, JM, Berman, S, et al. The neural correlates of placebo effects: a disruption account. Neuroimage 2004; 22: 447–455.
Google Scholar | Crossref | Medline | ISI46. Kupers, RC, Gybels, JM, Gjedde, A. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 2000; 87: 295–302.
Google Scholar | Crossref | Medline | ISI47. Oshiro, Y, Quevedo, AS, McHaffie, JG, et al. Brain mechanisms supporting discrimination of sensory features of pain: a new model. J Neurosci 2009; 29: 14924–14931.
Google Scholar | Crossref | Medline48. Cavina-Pratesi, C, Valyear, KF, Culham, JC, et al. Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. J Neurosci 2006; 26: 2704–2713.
Google Scholar | Crossref | Medline | ISI49. Feng, Y, Zhang, B, Zhang, J, et al.

Comments (0)

No login
gif