Anticoagulant rodenticide ingestion: Who will develop coagulopathy?

1. Othman, N, Chan, C, Lau, F. The epidemiology of household rodenticides poisoning in Hong Kong and its risk factors for developing coagulopathy. Hong Kong J Emerg Med 2014; 21(6): 339–345.
Google Scholar | SAGE Journals | ISI2. Dawson, A, Garthwaite, D. Rodenticide usage by local authorities in Great Britain. In: Foreign Agents Registration Act and Department for Environment (eds) Pesticide usage survey report 185. York, 2001, pp. 4–5.
Google Scholar3. Gummin, DD, Mowry, JB, Spyker, DA, et al. 2018 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 36th annual report (Erratum in: Clin Toxicol (Phila) 2019; 57(12): e1). Clin Toxicol (Phila) 2019; 57(12): 1220–1413.
Google Scholar | Crossref | Medline4. Ansell, J, Hirsh, J, Poller, L, et al. The pharmacology and management of the vitamin K antagonists: the seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy (Erratum in: Chest 2005; 127(1): 415–416). Chest 2004; 126(Suppl. 3): 204S–233S.
Google Scholar | Crossref | Medline5. Watt, BE, Proudfoot, AT, Bradberry, SM, et al. Anticoagulant rodenticides. Toxicol Rev 2005; 24(4): 259–269.
Google Scholar | Crossref | Medline6. Bruno, GR, Howland, MA, McMeeking, A, et al. Long-acting anticoagulant overdose: brodifacoum kinetics and optimal vitamin K dosing. Ann Emerg Med 2000; 36(3): 262–267.
Google Scholar | Crossref | Medline7. Lee, HJ, You, MR, Moon, WR, et al. Evaluation of risk factors in patients with vitamin K-dependent coagulopathy presumed to be caused by exposure to brodifacoum. Korean J Intern Med 2014; 29(4): 498–508.
Google Scholar | Crossref | Medline8. Levey, AS, Coresh, J, Greene, T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145: 247–254.
Google Scholar | Crossref | Medline | ISI9. National Kidney Foundation . K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39(2, Suppl. 1): S1–S266.
Google Scholar10. Patocka, J, Petroianu, G, Kuca, K. Toxic potential of superwarfarin: brodifacoum. Mil Med Sci Lett 2013; 82: 32–38.
Google Scholar | Crossref11. Metts, BC, Stewart, NJ Rodenticides. In: Haddad, LM, Shannon, MW, Winchester, JF (eds) Clinical management of poisoning and drug overdose. 3rd ed. Philadelphia, PA: W.B. Saunders, 1998, pp. 864–875.
Google Scholar12. Bates, D, Mintz, M. Phytonadione therapy in a multiple-drug overdose involving warfarin. Pharmacotherapy 2000; 20: 1208–1215.
Google Scholar | Crossref | Medline13. Ufer, M. Comparative pharmacokinetics of vitamin K antagonists. Clin Pharmacokinet 2005; 44: 1227–1246.
Google Scholar | Crossref | Medline | ISI14. Tárnoky, AL. Warfarin and albumin. Br Med J (Clin Res Ed) 1982; 285(6344): 812.
Google Scholar | Crossref | Medline15. Abdelhafiz, AH, Myint, MP, Tayek, JA, et al. Anemia, hypoalbuminemia, and renal impairment as predictors of bleeding complications in patients receiving anticoagulation therapy for nonvalvular atrial fibrillation: a secondary analysis. Clin Ther 2009; 31: 1534–1539.
Google Scholar | Crossref | Medline16. Kawai, M, Harada, M, Motoike, Y, et al. Impact of serum albumin levels on supratherapeutic PT-INR control and bleeding risk in atrial fibrillation patients on warfarin: a prospective cohort study. Int J Cardiol Heart Vasc 2019; 22: 111–116.
Google Scholar | Medline17. Kalra, A, Yetiskul, E, Wehrle, CJ, et al. Physiology, liver. In: StatPearls [internet]. Treasure Island, FL: StatPearls Publishing, 2020, https://www.ncbi.nlm.nih.gov/books/NBK535438/
Google Scholar18. Yip, L. Anticoagulant rodenticides. In: Dart, RC, Caravati, EM, McGuigan, MA (eds) Medical toxicology. Philadelphia, PA: Lippincott Williams & Wilkins, 2004, p. 1497.
Google Scholar19. Lai, M, Ewald, M. Anticoagulants. In: Shannon MW, Borron SW and Burns MJ (eds) Haddad and Winchester’s clinical management of poisoning and drug overdose (Vol. 1051). Philadelphia, PA: Saunders, 2007, pp. 1053–1062.
Google Scholar | Crossref20. Vandenbroucke, V, Bousquet-Melou, A, De Backer, P, et al. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther 2008; 31(5): 437–445.
Google Scholar | Crossref | Medline21. Berny, PJ, de Oliveira, LA, Videmann, B, et al. Assessment of ruminal degradation, oral bioavailability, and toxic effects of anticoagulant rodenticides in sheep. Am J Vet Res 2006; 67(2): 363–371.
Google Scholar | Crossref | Medline22. Ohara, M, Takahashi, H, Lee, MT, et al. Determinants of the over-anticoagulation response during warfarin initiation therapy in Asian patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS ONE 2014; 9(8): e105891.
Google Scholar | Crossref | Medline23. Antlitz, AM, Awalt, LF. A double-blind study of acetaminophen used in conjunction with oral anticoagulant therapy. Curr Ther Res Clin Exp 1969; 11(6): 360–361.
Google Scholar | Medline24. Mahé, I, Bertrand, N, Drouet, L, et al. Paracetamol: a haemorrhagic risk factor in patients on warfarin. Br J Clin Pharmacol 2005; 59(3): 371–374.
Google Scholar | Crossref | Medline25. Mahé, I, Bertrand, N, Drouet, L, et al. Interaction between paracetamol and warfarin in patients: a double-blind, placebo-controlled, randomized study. Haematologica 2006; 91(12): 1621–1627.
Google Scholar | Medline | ISI26. Parra, D, Beckey, NP, Stevens, GR. The effect of acetaminophen on the international normalized ratio in patients stabilized on warfarin therapy. Pharmacotherapy 2007; 27(5): 675–683.
Google Scholar | Crossref | Medline | ISI27. Zhang, Q, Bal-dit-Sollier, C, Drouet, L, et al. Interaction between acetaminophen and warfarin in adults receiving long-term oral anticoagulants: a randomized controlled trial. Eur J Clin Pharmacol 2011; 67(3): 309–314.
Google Scholar | Crossref | Medline28. Whyte, IM, Buckley, NA, Reith, DM, et al. Acetaminophen causes an increased International Normalized Ratio by reducing functional factor VII. Ther Drug Monit 2000; 22(6): 742–748.
Google Scholar | Crossref | Medline29. Thijssen, HH, Soute, BA, Vervoort, LM, et al. Paracetamol (acetaminophen) warfarin interaction: NAPQI, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thromb Haemost 2004; 92(4): 797–802.
Google Scholar | Medline30. Stafford, DW. The vitamin K cycle. J Thromb Haemost 2005; 3: 1873–1878.
Google Scholar | Crossref | Medline | ISI31. Caravati, EM, Erdman, AR, Scharman, EJ, et al. Long-acting anticoagulant rodenticide poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila) 2007; 45(1): 1–22.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif