1.
Yu, X, Yang, X. Peritoneal dialysis in China: meeting the challenge of chronic kidney failure. Am J Kidney Dis 2015; 65(1): 147–151.
Google Scholar |
Crossref |
Medline2.
Dong, J, Zhao, MH. Clinical research in a modern Chinese peritoneal dialysis center. Perit Dial Int 2014; 34(suppl 2): S49–S54.
Google Scholar |
SAGE Journals3.
Mehrotra, R, Devuyst, O, Davies, SJ, et al. The current state of peritoneal dialysis. J Am Soc Nephrol 2016; 27(11): 3238–3252.
Google Scholar |
Crossref |
Medline4.
Roberts, MA, Polkinghorne, KR, McDonald, SP, et al. Secular trends in cardiovascular mortality rates of patients receiving dialysis compared with the general population. Am J Kidney Dis 2011; 58(1): 64–72.
Google Scholar |
Crossref |
Medline5.
Jegatheesan, D, Cho, Y, Johnson, DW. Clinical studies of interventions to mitigate cardiovascular risk in peritoneal dialysis patients. Semin Nephrol 2018; 38(3): 277–290.
Google Scholar |
Crossref |
Medline6.
Manera, KE, Johnson, DW, Craig, JC, et al. Establishing a core outcome set for peritoneal dialysis: report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop. Am J Kidney Dis 2020; 75(3): 404–412.
Google Scholar |
Crossref |
Medline7.
Manera, KE, Tong, A, Craig, JC, et al. An international Delphi survey helped develop consensus-based core outcome domains for trials in peritoneal dialysis. Kidney Int 2019; 96(3): 699–710.
Google Scholar |
Crossref |
Medline8.
Lambie, M, Chess, J, Donovan, KL, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 2013; 24(12): 2071–2080.
Google Scholar |
Crossref |
Medline9.
Dong, J, Chen, Y, Luo, S, et al. Peritoneal protein leakage, systemic inflammation, and peritonitis risk in patients on peritoneal dialysis. Perit Dial Int 2013; 33(3): 273–279.
Google Scholar |
SAGE Journals10.
Su, YJ, Liao, SC, Cheng, BC, et al. Increasing high-sensitive C-reactive protein level predicts peritonitis risk in chronic peritoneal dialysis patients. BMC Nephrol 2013; 14: 185.
Google Scholar |
Crossref |
Medline11.
Koeth, RA, Wang, Z, Levison, BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576–585.
Google Scholar |
Crossref |
Medline12.
Zhu, W, Gregory, JC, Org, E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165(1): 111–124.
Google Scholar |
Crossref |
Medline13.
Liu, X, Hu, Z, Xu, X, et al. The associations of plant-based protein intake with all-cause and cardiovascular mortality in patients on peritoneal dialysis. Nutr Metab Cardiovasc Dis 2020; 30(6): 967–976.
Google Scholar |
Crossref |
Medline14.
Xu, X, Li, Z, Chen, Y, et al. Dietary fibre and mortality risk in patients on peritoneal dialysis. Br J Nutr 2019; 122(9): 996–1005.
Google Scholar |
Crossref |
Medline15.
Zeisel, SH, Warrier, M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 2017; 37: 157–181.
Google Scholar |
Crossref |
Medline16.
Missailidis, C, Hallqvist, J, Qureshi, AR, et al. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS One 2016; 11(1): e0141738.
Google Scholar |
Crossref |
Medline17.
Kaysen, GA, Johansen, KL, Chertow, GM, et al. Associations of trimethylamine n-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 2015; 25(4): 351–356.
Google Scholar |
Crossref |
Medline18.
Hai, X, Landeras, V, Dobre, MA, et al. Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLoS One 2015; 10(12): e0143731.
Google Scholar |
Crossref |
Medline19.
Stubbs, JR, Stedman, MR, Liu, S, et al. Trimethylamine N-oxide and cardiovascular outcomes in patients with ESKD receiving maintenance hemodialysis. Clin J Am Soc Nephrol 2019; 14(2): 261–267.
Google Scholar |
Crossref |
Medline20.
Shafi, T, Powe, NR, Meyer, TW, et al. Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol 2017; 28(1): 321–331.
Google Scholar |
Crossref |
Medline21.
Smith, SC, Jackson, R, Pearson, TA, et al. Principles for national and regional guidelines on cardiovascular disease prevention: a scientific statement from the world heart and stroke forum. Circulation 2004; 109(25): 3112–3121.
Google Scholar |
Crossref |
Medline22.
Bergstrom, J, Heimburger, O, Lindholm, B. Calculation of the protein equivalent of total nitrogen appearance from urea appearance. Which formulas should be used? Perit Dial Int 1998; 18(5): 467–473.
Google Scholar |
SAGE Journals23.
Li, PK, Szeto, CC, Piraino, B, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int 2016; 36(5): 481–508.
Google Scholar |
SAGE Journals24.
Bain, MA, Faull, R, Fornasini, G, et al. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 2006; 21(5): 1300–1304.
Google Scholar |
Crossref |
Medline25.
Sun, G, Yin, Z, Liu, N, et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 2017; 493(2): 964–970.
Google Scholar |
Crossref |
Medline26.
Dong, J, Li, Y, Xu, Y, et al. Daily protein intake and survival in patients on peritoneal dialysis. Nephrol Dial Transplant 2011; 26(11): 3715–3721.
Google Scholar |
Crossref |
Medline27.
Fouque, D, Kalantar-Zadeh, K, Kopple, J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 2008; 73(4): 391–398.
Google Scholar |
Crossref |
Medline28.
Wang, Z, Klipfell, E, Bennett, BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63.
Google Scholar |
Crossref |
Medline29.
Chung, SW, Chan, BT. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Addit Contam Part B Surveill 2009; 2(1): 44–51.
Google Scholar |
Crossref |
Medline30.
Fennema, D, Phillips, IR, Shephard, EA. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 2016; 44(11): 1839–1850.
Google Scholar |
Crossref |
Medline31.
Seldin, MM, Meng, Y, Qi, H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 2016; 5(2): e002767.
Google Scholar |
Crossref |
Medline32.
Zalunardo, NY, Rose, CL, Ma, IW, et al. Higher serum C-reactive protein predicts short and long-term outcomes in peritoneal dialysis-associated peritonitis. Kidney Int 2007; 71(7): 687–692.
Google Scholar |
Crossref |
Medline33.
Yang, X, Tong, Y, Yan, H, et al. High intraperitoneal interleukin-6 levels predict peritonitis in peritoneal dialysis patients: a prospective cohort study. Am J Nephrol 2018; 47(5): 317–324.
Google Scholar |
Crossref |
Medline
Comments (0)