1.
Beard, P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602-31.
Google Scholar |
Crossref |
Medline2.
Kumon, RE, Deng, CX, Wang, X. Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model. Ultrasound Med Biol. 2011;37(5):834-9.
Google Scholar |
Crossref |
Medline3.
Sinha, S, Rao, NA, Chinni, BK, Dogra, VS. Evaluation of frequency domain analysis of a multiwavelength photoacoustic signal for differentiating malignant from benign and normal prostates: ex vivo study with human prostates. J Ultrasound Med. 2016;35(10):2165-77.
Google Scholar |
Crossref |
Medline4.
Sinha, S, Rao, N, Chinni, B, Moalem, J, Giampolli, EJ, Dogra, V. Differentiation between malignant and normal human thyroid tissue using frequency analysis of multispectral Photoacoustic images. In: 2013 IEEE Western New York Image Processing Workshop (WNYIPW), , pp. 5-8. New York, NY: IEEE.
Google Scholar5.
Hysi, E, Wirtzfeld, LA, May, JP, Undzys, E, Li, SD, Kolios, MC. Photoacoustic signal characterization of cancer treatment response: correlation with changes in tumor oxygenation. Photoacoustics. 2017;5:25-35.
Google Scholar |
Crossref |
Medline6.
Xu, G, Meng, Z, Lin, J, Carson, P, Wang, X. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis. In: Photons Plus Ultrasound: Imaging and Sensing 2014, , vol. 8943, p. 89431G. St. Bellingham, WA: International Society for Optics and Photonics.
Google Scholar7.
Yang, Y, Wang, S, Tao, C, Wang, X, Liu, X. Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system. Appl Phys Lett. 2012;101(3):034105.
Google Scholar |
Crossref8.
Xu, G, Dar, IA, Tao, C, Liu, X, Deng, CX, Wang, X. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: a feasibility study. Appl Phys Lett. 2012;101(22):221102.
Google Scholar |
Crossref |
Medline9.
Wang, S, Tao, C, Yang, Y, Wang, X, Liu, X. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(7):1245-55.
Google Scholar |
Crossref10.
Chitnis, PV, Mamou, J, Sampathkumar, A, Feleppa, EJ. Spectrum analysis of photoacoustic signals for tissue classification. In: Photons Plus Ultrasound: Imaging and Sensing 2014, , vol. 8943, p. 89432J. St. Bellingham, WA: International Society for Optics and Photonics.
Google Scholar11.
Gao, X, Tao, C, Wang, X, Liu, X. Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy. Opt Lett. 2015;40(6):970-3.
Google Scholar |
Crossref12.
Xu, G, Fowlkes, JB, Tao, C, Liu, X, Wang, X. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model. Ultrasound Med Biol. 2015;41(5):1473-80.
Google Scholar |
Crossref13.
Xu, G, Davis, MC, Siddiqui, J, Tomlins, SA, Huang, S, Kunju, LP, et al. Quantifying gleason scores with photoacoustic spectral analysis: feasibility study with human tissues. Biomed Opt Express. 2015;6(12):4781-9.
Google Scholar |
Crossref14.
Feng, T, Perosky, JE, Kozloff, KM, Xu, G, Cheng, Q, Du, S, et al. Characterization of bone microstructure using photoacoustic spectrum analysis. Opt Express. 2015;23(19):25217-24.
Google Scholar |
Crossref15.
Wang, S, Tao, C, Gao, X, Wang, X, Liu, X. Quantitative photoacoustic examination of abnormal particles hidden in a mixture of particles with non-uniform sizes. Opt Express. 2015;23(25):32253-60.
Google Scholar |
Crossref16.
Rathi, N, Sinha, S, Chinni, B, Dogra, V, Rao, N. Feasibility of quantitative tissue characterization using novel parameters extracted from photoacoustic power spectrum. Biomed Signal Process Control. 2020;57:101719.
Google Scholar |
Crossref17.
Michailovich, O, Adam, D. Shift-invariant, DWT-based “projection” method for estimation of ultrasound pulse power spectrum. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(8):1060-72.
Google Scholar |
Crossref |
Medline18.
Diebold, GJ, Sun, T. Properties of photoacoustic waves in one, two, and three dimensions. Acta Acust United Acust. 1994;80(4):339-51.
Google Scholar
Comments (0)