Models for Assessing Severity of Illness in Patients with Bloodstream Infection: a Narrative Review

1.

Al-Hasan MN, Baddour LM. Resilience of the Pitt Bacteremia Score: 3 decades and counting. Clin Infect Dis. 2020;70:1834–6.

Article  Google Scholar 

2.

McGregor JC, Rich SE, Harris AD, et al. A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin Infect Dis. 2007;45:329–37.

Article  Google Scholar 

3.

Thom KA, Schweizer ML, Osih RB, et al. Impact of empiric antimicrobial therapy on outcomes in patients with Escherichia coli and Klebsiella pneumoniae bacteremia: a cohort study. BMC Infect Dis. 2008;8:1–9.

Article  Google Scholar 

4.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II, a severity of disease classification system. Crit Care Med. 1985;13:818–29.

CAS  Article  Google Scholar 

5.

Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100:1619–36.

CAS  Article  Google Scholar 

6.

Korvick JA, Marsh JW, Starzl TE, Yu VL. Pseudomonas aeruginosa bacteremia in patients undergoing liver transplantation: an emerging problem. Surgery. 1991;109:62.

CAS  PubMed  Google Scholar 

7.

Chow JW, Fine MJ, Shlaes DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115:585–90.

CAS  Article  Google Scholar 

8.

Korvick JA, Bryan CS, Farber B, et al. Prospective observational study of Klebsiella bacteremia in 230 patients: outcome for antibiotic combinations versus monotherapy. Antimicrob Agents Chemother. 1992;36:2639–44.

CAS  Article  Google Scholar 

9.

Nguyen MH, Peacock JE, Tanner DC, et al. Therapeutic approaches in patients with candidemia: evaluation in a multicenter, prospective, observational study. Arch Intern Med. 1995;155:2429–35.

CAS  Article  Google Scholar 

10.

Chow JW, Victor LY. Combination antibiotic therapy versus monotherapy for Gram- negative bacteraemia: a commentary. Int J Antimicrob Agents. 1999;11:7–12.

CAS  Article  Google Scholar 

11.

Hilf M, Victor LY, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy forPseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med. 1989;87:540–6.

CAS  Article  Google Scholar 

12.

Hill PC, Birch M, Chambers S, et al. Prospective study of 424 cases of Staphylococcus aureus bacteraemia: determination of factors affecting incidence and mortality. Intern Med J. 2001;31:97–103.

CAS  Article  Google Scholar 

13.

Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Predictive scoring model of mortality in Gram-negative bloodstream infection. Clin Microbiol Infect. 2013;19:948–54.

CAS  Article  Google Scholar 

14.

Henderson H, Luterbach CL, Cober E, et al. The Pitt bacteremia score predicts mortality in nonbacteremic infections. Clin Infect Dis. 2019;70:1826–33.

Article  Google Scholar 

15.

Yzerman EF, Boelens HA, Tjhie JH, Kluytmans JA, Mouton JW, Verbrugh HA. APACHE for predicting course and outcome of nosocomial Staphylococcus aureus bacteremia and its relation to host defense. J Infect Dis. 1996;173:914–9.

CAS  Article  Google Scholar 

16.

Mylotte JM, Aeschlimann JR, Rotella DL. Staphylococcus aureus bacteremia: factors predicting hospital mortality. Infect Control Hosp Epidemiol. 1996;17:165–8.

CAS  Article  Google Scholar 

17.

Eng J. ROC analysis: Web-based calculator for ROC curves. Baltimore: Johns Hopkins University. Available from: http://www.jrocfit.org. Accessed 10/1/2020.

18.

Al-Hasan MN, Juhn YJ, Bang DW, Yang HJ, Baddour LM. External validation of bloodstream infection mortality risk score in a population-based cohort. Clin Microbiol Infect. 2014;20:886–91.

CAS  Article  Google Scholar 

19.

Cain SE, Kohn J, Bookstaver PB, Albrecht H, Al-Hasan MN. Stratification of the impact of inappropriate empirical antimicrobial therapy for Gram-negative bloodstream infections by predicted prognosis. Antimicrob Agents Chemother. 2015;59:245–50.

Article  Google Scholar 

20.

Battle SE, Bookstaver PB, Justo JA, Kohn J, Albrecht H, Al-Hasan MN. Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: Stratification by prognosis. J Antimicrob Chemother. 2017;72:299–304.

CAS  Article  Google Scholar 

21.

Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Combination therapy vs. monotherapy for gram-negative bloodstream infection: matching by predicted prognosis. Int J Antimicrob Agents. 2018;51:488–92.

CAS  Article  Google Scholar 

22.

Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit care Med. 1981;9:591–7.

CAS  Article  Google Scholar 

23.

Wagner DP, Knaus WA, Draper EA. Statistical validation of a severity of illness measure. Am J Pub Health. 1983;73:878–84.

CAS  Article  Google Scholar 

24.

Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34:1297–310.

Article  Google Scholar 

25.

Sunenshine RH, Wright MO, Maragakis LL, et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis. 2007;13:97–103.

Article  Google Scholar 

26.

Fortis S, O’Shea AM, Beck BF, et al. An automated computerized critical illness severity scoring system derived from APACHE III: modified APACHE. J Crit Care. 2018;48:237–42.

27.

Marsh K, Dubrovskaya Y, Jen SP, et al. Intravenous push versus intravenous piggyback beta-lactams for the empiric management of gram-negative bacteremia. J Clin Pharm Ther. 2021;46:373–81.

CAS  Article  Google Scholar 

28.

Schwaber MJ, Carmeli Y. Antimicrobial resistance and patient outcomes: the hazards of adjustment. Crit Care. 2006;10:1–2.

Article  Google Scholar 

29.

Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95(Suppl 1):S144–50.

Article  Google Scholar 

30.

Marra AR, Bearman GM, Wenzel RP, Edmond MB. Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. BMC Infect Dis. 2006;6:1–6.

Article  Google Scholar 

31.

Osih RB, McGregor JC, Rich SE, et al. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother. 2007;51:839–44.

CAS  Article  Google Scholar 

32.

Hamilton KW, Bilker WB, Lautenbach E. Controlling for severity of illness in assessment of the association between antimicrobial-resistant infection and mortality: impact of calculation of Acute Physiology and Chronic Health Evaluation (APACHE) II scores at different time points. Infect Control Hosp Epidemiol. 2007;28:832–6.

Article  Google Scholar 

33.

Thom KA, Shardell MD, Osih RB, et al. Controlling for severity of illness in outcome studies involving infectious diseases: impact of measurement at different time points. Infect Control Hosp Epidemiol. 2008;29:1048–53.

Article  Google Scholar 

34.

Stevens V, Lodise TP, Tsuji B, et al. The utility of Acute Physiology and Chronic Health Evaluation II scores for prediction of mortality among intensive care unit (ICU) and non-ICU patients with methicillin-resistant Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 2012;33:558–64.

Article  Google Scholar 

留言 (0)

沒有登入
gif