V.I.T.A.M. in COVID 19: A Systematic Approach to a Global Pandemic

1. Johns Hopkins University of Medicine Coronavirus Resource Center . Johns Hopkins Coronavirus Resource Center. Accessed August 9, 2021. https://coronavirus.jhu.edu/.
Google Scholar2. Kashani, KB . Hypoxia in COVID-19: sign of severity or cause for poor outcomes. Mayo Clin Proc. 2020;95(6):1094-1096. doi:10.1016/j.mayocp.2020.04.021
Google Scholar | Crossref | Medline3. Dhont, S, Derom, E, Van Braeckel, E, Depuydt, P, Lambrecht, BN. The pathophysiology of “happy” hypoxemia in COVID-19. Respir Res. 2020;21(1):198. doi:10.1186/s12931-020-01462-5
Google Scholar | Crossref | Medline4. Ruaro, B, Salton, F, Braga, L, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. IJMS. 2021;22(5):2566. doi:10.3390/ijms22052566
Google Scholar | Crossref5. Elisa, B, Rossana, B, Fabrizio, Z, et al. Radiological-pathological signatures of patients with COVID-19-related pneumomediastinum: is there a role for sonic-hedgehog and Wnt5a pathways? ERJ Open Res. Published online June 25, 2021:7(3):00346-02021. doi:10.1183/23120541.00346-2021
Google Scholar | Crossref | Medline6. RECOVERY Collaborative Group , Horby, P, Lim, WS, Emberson JR, et al. Dexamethasone in hospitalized patients with covid-19 - preliminary report. N Engl J Med. Published online July 17, 2020;384(8):693-704. doi:10.1056/NEJMoa2021436
Google Scholar | Crossref | Medline7. Beigel, JH, Tomashek, KM, Dodd, LE, et al. Remdesivir for the treatment of covid-19 - final report. N Engl J Med. Published online October 8, 2020;383(19):1813-1826. doi:10.1056/NEJMoa2007764
Google Scholar | Crossref | Medline8. Salton, F, Confalonieri, P, Meduri, GU, et al. Prolonged Low-dose methylprednisolone in patients With severe COVID-19 pneumonia. Open Forum Infect Dis. 2020;7(10):ofaa421. doi:10.1093/ofid/ofaa421
Google Scholar | Crossref | Medline9. Geri, P, Salton, F, Zuccatosta, L, et al. Limited role for bronchoalveolar lavage to exclude COVID-19 after negative upper respiratory tract swabs: a multicentre study. Eur Respir J. 2020;56(4):2001733. doi:10.1183/13993003.01733-2020
Google Scholar | Crossref | Medline10. Martín-Martín, A, Orduna-Malea, E, Thelwall, M, Delgado López-Cózar, E. Google scholar, Web of science, and scopus: a systematic comparison of citations in 252 subject categories. J Informetr. 2018;12(4):1160-1177. doi:10.1016/j.joi.2018.09.002
Google Scholar | Crossref11. Chen, Q, Allot, A, Lu, Z. Keep up with the latest coronavirus research. Nature. 2020;579(7798):193. doi:10.1038/d41586-020-00694-1
Google Scholar | Crossref | Medline12. Murad, MH, Nayfeh, T, Urtecho Suarez, M, et al. A framework for evidence synthesis programs to respond to a pandemic. Mayo Clin Proc. 2020;95(7):1426-1429. doi:10.1016/j.mayocp.2020.05.009
Google Scholar | Crossref | Medline13. Sackett, DL . Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1986;89(2 Suppl):2S-3S.
Google Scholar | Crossref | Medline | ISI14. Grissom, CK, Hirshberg, EL, Dickerson, JB, et al. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*. Crit Care Med. 2015;43(2):288-295. doi:10.1097/CCM.0000000000000715
Google Scholar | Crossref | Medline15. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564-2575. doi:10.1056/NEJMoa062200.
Google Scholar16. Alhazzani, W, Møller, MH, Arabi, YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854-887. doi:10.1007/s00134-020-06022-5
Google Scholar | Crossref | Medline17. Meyhoff, TS, Møller, MH, Hjortrup, PB, Cronhjort, M, Perner, A, Wetterslev, J. Lower versus higher fluid volumes during initial management of sepsis: a systematic review With meta-analysis and trial sequential analysis. Chest. 2020;157(6):1478-1496. doi:10.1016/j.chest.2019.11.050
Google Scholar | Crossref | Medline18. Herzum, I, Renz, H. Inflammatory markers in SIRS, sepsis and septic shock. Curr Med Chem. 2008;15(6):581-587. doi:10.2174/092986708783769704
Google Scholar | Crossref | Medline19. Cross, LJM, Matthay, MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin. 2011;27(2):355-377. doi:10.1016/j.ccc.2010.12.005
Google Scholar | Crossref | Medline20. Campochiaro, C, Della-Torre, E, Cavalli, G, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43-49. doi:10.1016/j.ejim.2020.05.021
Google Scholar | Crossref | Medline21. Colaneri, M, Bogliolo, L, Valsecchi, P, et al. Tocilizumab for treatment of severe COVID-19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5):695. doi:10.3390/microorganisms8050695
Google Scholar | Crossref22. Cavalli, G, De Luca, G, Campochiaro, C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325-e331. doi:10.1016/S2665-9913(20)30127-2
Google Scholar | Crossref | Medline23. Temesgen, Z, Assi, M, Vergidis, P, et al. First clinical Use of lenzilumab to neutralize GM-CSF in patients with severe COVID-19 pneumonia. medRxiv. Published online June 14, 2020. doi:10.1101/2020.06.08.20125369
Google Scholar | Medline24. Iglesias-Julián, E, López-Veloso, M, de-la-Torre-Ferrera, N, et al. High dose subcutaneous anakinra to treat acute respiratory distress syndrome secondary to cytokine storm syndrome among severely ill COVID-19 patients. J Autoimmun. . Published online August 20, 2020:115:102537. doi:10.1016/j.jaut.2020.102537
Google Scholar | Crossref | Medline25. Huet, T, Beaussier, H, Voisin, O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. doi:10.1016/S2665-9913(20)30164-8
Google Scholar | Crossref | Medline26. Aouba, A, Baldolli, A, Geffray, L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020;79(10):1381-1382. doi:10.1136/annrheumdis-2020-217706
Google Scholar | Crossref | Medline27. Kaye, AG, Siegel, R. The efficacy of IL-6 inhibitor tocilizumab in reducing severe COVID-19 mortality: a systematic review. PeerJ. 2020;8:e10322. doi:10.7717/peerj.10322
Google Scholar | Crossref | Medline28. Kotak, S, Khatri, M, Malik, M, et al. Use of tocilizumab in COVID-19: a systematic review and meta-analysis of current evidence. Cureus. 2020;12(10):e10869. doi:10.7759/cureus.10869
Google Scholar | Crossref | Medline29. Stone, JH, Frigault, MJ, Serling-Boyd, NJ, et al. Efficacy of tocilizumab in patients hospitalized with covid-19. N Engl J Med. Published online October 21 2020;383(24):2333-2344. doi:383(24):2333-2344. doi:10.1056/NEJMoa2028836
Google Scholar | Crossref | Medline30. Temesgen, Z, Assi, M, Shweta, FNU, et al. GM-CSF Neutralization With lenzilumab in severe COVID-19 pneumonia: a case-cohort study. Mayo Clin Proc. 2020;95(11):2382-2394. doi:10.1016/j.mayocp.2020.08.038
Google Scholar | Crossref | Medline31. Wise, J . Covid-19: arthritis drug tocilizumab reduces deaths in hospitalised patients, study shows. BMJ. Published online February. 2021;372:n433. doi:10.1136/bmj.n433
Google Scholar | Crossref | Medline32. Al-Samkari, H, Karp Leaf, RS, Dzik, WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500. doi:10.1182/blood.2020006520
Google Scholar | Crossref | Medline33. Tang, N, Li, D, Wang, X, Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. doi:10.1111/jth.14768
Google Scholar | Crossref | Medline34. Tang, N, Bai, H, Chen, X, Gong, J, Li, D, Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099. doi:10.1111/jth.14817
Google Scholar | Crossref | Medline35. Munshi, L, Walkey, A, Goligher, E, Pham, T, Uleryk, EM, Fan, E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med. 2019;7(2):163-172. doi:10.1016/S2213-2600(18)30452-1
Google Scholar | Crossref | Medline36. MacLaren, G, Fisher, D, Brodie, D. Preparing for the most critically Ill patients With COVID-19: the potential role of extracorporeal membrane oxygenation. JAMA. 2020;323(13):1245-1246. doi:10.1001/jama.2020.2342
Google Scholar | Crossref | Medline37. Goligher, EC, Tomlinson, G, Hajage, D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post Hoc Bayesian analysis of a randomized clinical trial. JAMA. 2018;320(21):2251-2259. doi:10.1001/jama.2018.14276
Google Scholar | Crossref | Medline38. Tavazzi, G, Marco, P, Mongodi, S, Dammassa, V, Romito, G, Mojoli, F. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia. Crit Care. 2020;24(1):508. doi:10.1186/s13054-020-03222-9
Google Scholar | Crossref | Medline39. Abou-Arab, O, Huette, P, Debouvries, F, Dupont, H, Jounieaux, V, Mahjoub, Y. Inhaled nitric oxide for critically ill covid-19 patients: a prospective study. Crit Care. 2020;24(1):645. doi:10.1186/s13054-020-03371-x
Google Scholar | Crossref | Medline40. Kacmarek, RM . Strategies to optimize alveolar recruitment. Curr Opin Crit Care. 2001;7(1):15-20. doi:10.1097/00075198-200102000-00003
Google Scholar | Crossref | Medline41. Reychler, G, Uribe Rodriguez, V, Hickmann, CE, et al. Incentive spirometry and positive expiratory pressure improve ventilation and recruitment in postoperative recovery: a randomized crossover study. Physiother Theory Pract. 2019;35(3):199-205. doi:10.1080/09593985.2018.1443185
Google Scholar | Crossref | Medline42. Kow, CS, Aldeyab, M, Hasan, SS. Effect of remdesivir on mortality in patients with COVID-19: a meta-analysis of randomized control trials. J Med Virol. Published online October 29, 2020;93:1860-1861. doi:10.1002/jmv.26638
Google Scholar | Crossref | Medline43. Spinner, CD, Gottlieb, RL, Criner, GJ, et al. Effect of remdesivir versus standard care on clinical Status at 11 days in patients With moderate COVID-19: a randomized clinical trial. JAMA. 2020;324(11):1048-1057. doi:10.1001/jama.2020.16349
Google Scholar | Crossref | Medline44. Wang, Y, Zhang, D, Du, G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-1578. doi:10.1016/S0140-6736(20)31022-9
Google Scholar | Crossref | Medline45. Goldman, JD, Lye, DCB, Hui, DS, et al. Remdesivir for 5 or 10 days in patients with severe covid-19. N Engl J Med. Published online May 27, 2020;383(19):1827-1837. doi:383(19):1827-1837. doi:10.1056/NEJMoa2015301
Google Scholar |

留言 (0)

沒有登入
gif