1.
Banks, J . Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–26.
Google Scholar |
Crossref |
Medline2.
Mehra, P, Miner, J, D’Innocenzo, R, Nadershah, M. Use of 3-d stereolithographic models in oral and maxillofacial surgery. J Maxillofac Oral Surg. 2011;10(1):6–13.
Google Scholar |
Crossref |
Medline3.
Winder, J, Bibb, R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2005;63(7):1006–1015.
Google Scholar |
Crossref |
Medline4.
Valding, B, Zrounba, H, Martinerie, S, May, L, Broome, M. Should you buy a three-dimensional printer? A study of an orbital fracture. J Craniofac Surg. 2018;29(7):1925–1927. doi:10.1097/SCS.0000000000005048
Google Scholar |
Crossref |
Medline5.
Sinha, P, Skolnick, G, Patel, KB, Branham, GH, Chi, JJ. A 3-dimensional-printed short-segment template prototype for mandibular fracture repair. JAMA Facial Plast Surg. 2018;20(5):373–380.
Google Scholar |
Crossref |
Medline6.
Ren, W, Gao, L, Li, S, et al. Virtual planning and 3D printing modeling for mandibular reconstruction with fibula free flap. Med Oral Patol Oral Cir Bucal. 2018;23(3):e359–e366.
Google Scholar |
Medline7.
Fan, B, Chen, H, Sun, YJ, et al. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures. Graefes Arch Clin Exp Ophthalmol [Albrecht Von Graefes Arch Klin Exp Ophthalmol]. 2017;255(10):2051–2057. doi:10.1007/s00417-017-3766-y
Google Scholar |
Crossref |
Medline8.
Chen, CH, Chen, CT, Wang, PF, Wang, YT, Hsu, PH, Lin, CL. A novel anatomical thin titanium mesh plate with patient-matched bending technique for orbital floor reconstruction. J Cranio-Maxillofac Surg Off Publ Eur Assoc Cranio-Maxillofac Surg. 2018;46(9):1526–1532. doi:10.1016/j.jcms.2018.04.014
Google Scholar |
Medline9.
Kozakiewicz, M, Elgalal, M, Loba, P, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Cranio-Maxillofac Surg Off Publ Eur Assoc Cranio-Maxillofac Surg. 2009;37(4):229–234. doi:10.1016/j.jcms.2008.11.009
Google Scholar |
Crossref |
Medline10.
Raisian, S, Fallahi, HR, Khiabani, KS, Heidarizadeh, M, Azdoo, S. Customized titanium mesh based on the 3D printed model vs. manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial. Rev Recent Clin Trials. 2017;12(3):154–158. doi:10.2174/1574887112666170821165206
Google Scholar |
Crossref |
Medline11.
Msallem, B, Beiglboeck, F, Honigmann, P, Jaquiéry, C, Thieringer, F. Craniofacial reconstruction by a cost-efficient template-based process using 3D printing. Plast Reconstr Surg Glob Open. 2017;5(11):e1582–e1582.
Google Scholar |
Crossref |
Medline12.
Yang, WF, Choi, WS, Leung, YY, et al. Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: a prospective pilot study. Oral Oncol. 2018;78:31–36.
Google Scholar |
Crossref |
Medline13.
Batstone, MD . Reconstruction of major defects of the jaws. Aust Dent J. 2018;63(suppl 1):S108–S113.
Google Scholar |
Crossref |
Medline14.
Dell’Aversana Orabona, G, Abbate, V, Maglitto, F, et al. Low-cost, self-made CAD/CAM-guiding system for mandibular reconstruction. Surg Oncol. 2018;27(2):200–207.
Google Scholar |
Crossref |
Medline15.
Elegbede, A, Diaconu, SC, McNichols, CHL, et al. Office-based three-dimensional printing workflow for craniomaxillofacial fracture repair. J Craniofac Surg. 2018;29(5):e440–e444.
Google Scholar |
Crossref |
Medline16.
Mendez, BM, Chiodo, MV, Patel, PA. Customized in-office three-dimensional printing for virtual surgical planning in craniofacial surgery. J Craniofac Surg. 2015;26(5):1584–1586.
Google Scholar |
Crossref |
Medline17.
Salgueiro, MI, Stevens, MR. Experience with the use of prebent plates for the reconstruction of mandibular defects. Craniomaxillofacial Trauma Reconstr. 2010;3(4):201–208.
Google Scholar |
SAGE Journals18.
Smithers, FAE, Cheng, K, Jayaram, R, Mukherjee, P, Clark, JR. Maxillofacial reconstruction using in-house virtual surgical planning. ANZ J Surg. 2018;88(9):907–912.
Google Scholar |
Crossref |
Medline19.
Abo Sharkh, H, Makhoul, N. In-house surgeon-led virtual surgical planning for maxillofacial reconstruction. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2020;78(4):651–660. doi:10.1016/j.joms.2019.11.013
Google Scholar |
Crossref |
Medline20.
Kamio, T, Hayashi, K, Onda, T, et al. Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields. 3D Print Med. 2018;4(1):6. doi:10.1186/s41205-018-0028-5
Google Scholar |
Crossref |
Medline21.
Ghai, S, Sharma, Y, Jain, N, Satpathy, M, Pillai, AK. Use of 3-D printing technologies in craniomaxillofacial surgery: a review. Oral Maxillofac Surg. 2018;22(3):249–259. doi:10.1007/s10006-018-0704-z
Google Scholar |
Crossref |
Medline22.
Pawlaczyk-Luszczynska, M, Dudarewicz, A, Szymczak, W, Sliwinska-Kowalska, M. Evaluation of annoyance from low frequency noise under laboratory conditions. Noise Health. 2010;12(48):166–181.
Google Scholar |
Crossref |
Medline23.
Yi, J, LeBouf, RF, Duling, MG, et al. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol Environ Health A. 2016;79(11):453–465.
Google Scholar |
Crossref |
Medline24.
Vance, ME, Pegues, V, van Montfrans, S, Leng, W, Marr, LC. Aerosol emissions from fuse-deposition modeling 3d printers in a chamber and in real indoor environments. Environ Sci Technol. 2017;51(17):9516–9523.
Google Scholar |
Crossref |
Medline25.
Steinle, P . Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Environ Hyg. 2016;13(2):121–132.
Google Scholar |
Crossref |
Medline26.
Stefaniak, AB, Bowers, LN, Knepp, AK, et al. Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. J Occup Environ Hyg. 2019;16(8):519–531.
Google Scholar |
Crossref |
Medline27.
Stefaniak, AB, Johnson, AR, Du Preez, S, et al. Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printer. J Chem Health Saf. 2019;26(2):19–30.
Google Scholar |
Crossref |
Medline28.
Stefaniak, AB, LeBouf, RF, Yi, J, et al. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. J Occup Environ Hyg. 2017;14(7):540–550.
Google Scholar |
Crossref |
Medline29.
3-D-Drucker sicher verwenden . Sichere arbeitsplätze in produktion und industrie. Published December 9, 2019. Accessed December 12, 2019. Intranet
Google Scholar30.
Musterspule SplintFill Filament, 2,85 mm - Shop 3D Agency. Accessed May 14, 2020.
https://eshop-3d-agency.de/p/musterspule-splintfill-filament-2-85mm Google Scholar31.
Kunststoffverabeitung, B . Sicherheitsdatenblatt gemäß 91/155/EWG. Accessed May 14, 2020.
https://eshop-3d-agency.de/WebRoot/Store16/Shops/e50a3f7b-8bd4-440d-a099-1dda18a98e9c/5CE2/94FF/438B/CCDF/18ED/0A48/3548/D079/SD-SplintFill-DE.pdf Google Scholar32.
Arfona, LLC. Arfona 3D printing materials. Arfona. Accessed May 14, 2020.
https://www.arfona.com/materials Google Scholar33.
DAS FILAMENT Inh . Roman Stieben AS 6 91448 Emskirchen. PLA Filament - 1,75 mm - Neonorange. Published May 14, 2020. Accessed May 14, 2020.
https://www.dasfilament.de/filament-spulen/pla-1-75-mm/96/pla-filament-1-75-mm-neonorange?c=11 Google Scholar34.
BDEW . BDEW-Strompreisanalyse Januar 2020. Accessed May 29, 2020.
http://www.bdew.de/service/daten-und-grafiken/bdew-strompreisanalyse/ Google Scholar35.
20200107_BDEW-Strompreisanalyse_Januar_2020.pdf. Accessed May 29, 2020.
https://www.bdew.de/media/documents/20200107_BDEW-Strompreisanalyse_Januar_2020.pdf Google Scholar36.
Slicer Wiki contributors . Documentation/4.x/Acknowledgments. Published April 9, 2020. Accessed September 22, 2021.
https://www.slicer.org/w/index.php?title=Documentation/4.x/Acknowledgments&oldid=61143 Google Scholar37.
Jolesz, FA . Intraoperative Imaging and Image-Guided Therapy. Springer; 2014.
Google Scholar |
Crossref38.
Kikinis, R, Pieper, SD, Vosburgh, KG. 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, FA , ed. Intraoperative Imaging and Image-Guided Therapy. New York: Springer; 2014:277-289.
Google Scholar |
Crossref39.
Kapur, T, Pieper, S, Fedorov, A, et al. Increasing the impact of medical image computing using community-based open-access hackathons: the NA-MIC and 3D slicer experience. Med Image Anal. 2016;33:176–180.
Google Scholar |
Crossref |
Medline40.
Fedorov, A, Beichel, R, Kalpathy-Cramer, J, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–1341.
Google Scholar |
Crossref |
Medline41.
Velasco, I, Vahdani, S, Ramos, H. Low-cost method for obtaining medical rapid prototyping using desktop 3D printing: a novel technique for mandibular reconstruction planning. J Clin Exp Dent. 2017;9(9):e1103–e1108.
Google Scholar |
Medline42.
Autodesk, Inc . Autodesk Meshmixer free software for making awesome stuff. Accessed May 14, 2020.
http://www.meshmixer.com/ Google Scholar43.
Foundation B .blender.org - Home of the Blender project - Free and Open 3D Creation Software. blender.org. Accessed May 14, 2020.
https://www.blender.org/ Google Scholar44.
Ultimaker, BV . Ultimaker Cura: Leistungsstarke, benutzerfreundliche 3D-Drucksoftware. ultimaker.com. Accessed May 14, 2020.
https://ultimaker.com/de/software/ultimaker-cura Google Scholar45.
Hofmann, M . Formular Laufzettel / Implantat MKG. Published online May 27, 2019.
Google Scholar46.
DRG-Research Group Webgrouper . Accessed July 31, 2020.
https://www.drg-research-group.de/index.php?option=com_webgrouper&Itemid=112&view=webgrouperv Google Scholar47.
Hinzpeter, R, Sprengel, K, Wanner, GA, Mildenberger, P, Alkadhi, H. Repeated CT scans in trauma transfers: an analysis of indications, radiation dose exposure, and costs. Eur J Radiol. 2017;88:135–140. doi:10.1016/j.ejrad.2017.01.007
Google Scholar |
Crossref |
Medline48.
Bracco, D, Deckelbaum, D, Artho, G, et al. Additional and repeated computed tomography in interfacility trauma transfers: room for standardization. Surgery. 2018;164(4):872–878. doi:10.1016/j.surg.2018.07.007
Google Scholar |
Crossref |
Medline49.
Jones, AC, Woldemikael, D, Fisher, T, Hobbs, GR, Prud’homme, BJ, Bal, GK. Repeated computed tomographic scans in transferred trauma patients: indications, costs, and radiation exposure. J Trauma Acute Care Surg. 2012;73(6):1564–1569. doi:10.1097/TA.0b013e31826fc85f
Google Scholar |
Crossref |
Medline50.
Vereinigung der kommunalen Arbeitgeberverbände MB . Tarifvertrag für Ärztinnen und Ärzte an kommunalen Krankenhäusern im Bereich der kommunalen Arbeitgeberverbände (TV-Ärzte/VKA). Published July 31, 2020. Accessed July 31, 2020.
https://bit.ly/316orRP Google Scholar51.
Werz, SM, Zeichner, SJ, Berg, BI, Zeilhofer, HF, Thieringer F. 3D Printed surgical simulation models as educational tool by maxillofacial surgeons. Eur J Dent Educ Off J Assoc Dent Educ Eur. 2018;22(3):e500–e505.
Google Scholar |
Crossref |
Medline52.
Ploch, CC, Mansi, CSSA, Jayamohan, J, Kuhl, E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016;90:668–674.
Google Scholar |
Crossref |
Medline53.
Nicot, R, Druelle, C, Schlund, M, et al. Use of 3D printed models in student education of craniofacial traumas. Dent Traumatol Off Publ Int Assoc Dent Traumatol. 2019;35(4-5):296–299.
Google Scholar |
Crossref |
Medline54.
Hasan, O, Atif, M, Jessar, MM, Hashmi, P. Application of 3D printing in orthopaedic surgery. A new affordable horizon for cost-conscious care. JPMA J Pak Med Assoc. 2019;69(Suppl 1)(1):S46–S50.
Google Scholar |
Medline55.
Chen, K, Yang, F, Yao, S, et al. Application of computer-assisted virtual surgical procedures and three-dimensional printing of patient-specific pre-contoured plates in bicolumnar acetabular fracture fixation. Orthop Traumatol Surg Res. 2019;105(5):877–884.
Comments (0)