The brinker repressor system regulates injury-induced nociceptive sensitization in Drosophila melanogaster

1. Dahlhamer, J, Lucas, J, Zelaya, C, Nahin, R, Mackey, S, DeBar, L, Kerns, R, Von Korff, M, Porter, L, Helmick, C. Prevalence of chronic pain and high-impact chronic pain among adults – United States, 2016. MMWR Morb Mortal Wkly Rep 2018; 67: 1001–1006.
Google Scholar | Crossref | Medline2. Goldberg, DS, McGee, SJ. Pain as a global public health priority. BMC Public Health 2011; 11: 770–770.
Google Scholar | Crossref | Medline | ISI3. Centers for Disease Control and Prevention . Annual surveillance report of drug-related risks and outcomes – United States (Surveillance Special Report 2pdf icon). Washington, DC: Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, 2018,
Google Scholar4. Wide-Ranging Online Data for Epidemiologic Research . Atlanta, GA: CDC, National Center for Health Statistics, 2020.
Google Scholar5. Babcock, DT, Landry, C, Galko, MJ. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr Biol 2009; 19: 799–806.
Google Scholar | Crossref | Medline6. Viswanath, V, Story, GM, Peier, AM, Petrus, MJ, Lee, VM, Hwang, SW, Patapoutian, A, Jegla, T. Opposite thermosensor in fruitfly and mouse. Nature 2003; 423: 822–823.
Google Scholar | Crossref | Medline | ISI7. Xu, SY, Cang, CL, Liu, XF, Peng, YQ, Ye, YZ, Zhao, ZQ, Guo, AK. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene. Genes Brain Behav 2006; 5: 602–613.
Google Scholar | Crossref | Medline | ISI8. Tracey, WD, Wilson, RI, Laurent, G, Benzer, S. Painless, a Drosophila gene essential for nociception. Cell 2003; 113: 261–273.
Google Scholar | Crossref | Medline9. Babcock, DT, Shi, S, Jo, J, Shaw, M, Gutstein, HB, Galko, MJ. Hedgehog signaling regulates nociceptive sensitization. Curr Biol 2011; 21: 1525–1533.
Google Scholar | Crossref | Medline10. Im, SH, Takle, K, Jo, J, Babcock, D, Ma, Z, Xiang, Y, Galko, M. Tachykinin acts upstream of autocrine hedgehog signaling during nociceptive sensitization in Drosophila. eLife 2015; 4: e10735.
Google Scholar | Crossref | Medline11. Follansbee, TL, Gjelsvik, KJ, Brann, CL, McParland, A, Longhurst, C, Galko, M, Ganter, G. Drosophila nociceptive sensitization requires BMP signaling via the canonical SMAD pathway. J Neurosci 2017; 37: 8524–8533.
Google Scholar | Crossref | Medline12. Gjelsvik, KJ, Follansbee, TL, Ganter, GK. Bone morphogenetic protein glass bottom boat (BMP5/6/7/8) and its receptor wishful thinking (BMPRII) are required for injury-induced allodynia in Drosophila. Mol Pain 2018; 14: 1744806918802703.
Google Scholar | SAGE Journals | ISI13. Brann, CL, Moulton, JK, Ganter, GK. Glypicans dally and dally-like control injury-induced allodynia in Drosophila. Mol Pain 2019; 15: 1744806919856777–1744806919856777.
Google Scholar | SAGE Journals | ISI14. Affolter, M, Basler, K. The decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 2007; 8: 663–674.
Google Scholar | Crossref | Medline | ISI15. O'Connor, MB, Umulis, D, Othmer, HG, Blair, SS. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 2006; 133: 183–193.
Google Scholar | Crossref | Medline16. Ramel, M-C, Hill, CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586: 1929–1941.
Google Scholar | Crossref | Medline17. Raftery, LA, Umulis, DM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol 2012; 24: 158–165.
Google Scholar | Crossref | Medline18. Ashe, HL. BMP signalling: synergy and feedback create a step gradient. Curr Biol 2005; 15: R375–377.
Google Scholar | Crossref | Medline19. Shravage, BV, Altmann, G, Technau, M, Roth, S. The role of dpp and its inhibitors during eggshell patterning in Drosophila. Development 2007; 134: 2261–2271.
Google Scholar | Crossref | Medline20. Yakoby, N, Lembong, J, Schüpbach, T, Shvartsman, SY. Drosophila eggshell is patterned by sequential action of feedforward and feedback loops. Development 2008; 135: 343–351.
Google Scholar | Crossref | Medline21. Ozkaynak, E, Rueger, DC, Drier, EA, Corbett, C, Ridge, RJ, Sampath, TK, Oppermann, H. OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 1990; 9: 2085–2093.
Google Scholar | Crossref | Medline | ISI22. Jones, CM, Lyons, KM, Hogan, BL. Involvement of bone morphogenetic protein-4 (BMP-4) and vgr-1 in morphogenesis and neurogenesis in the mouse. Development 1991; 111: 531–542.
Google Scholar | Crossref | Medline | ISI23. Chen, Y, Riese, MJ, Killinger, MA, Hoffmann, FA. Genetic screen for modifiers of Drosophila decapentaplegic signaling identifies mutations in punt, mothers against dpp and the BMP-7 homologue, 60A. Development 1998; 125: 1759–1768.
Google Scholar | Crossref | Medline24. Campbell, G, Tomlinson, A. Transducing the dpp morphogen gradient in the wing of Drosophila: regulation of dpp targets by brinker. Cell 1999; 96: 553–562.
Google Scholar | Crossref | Medline25. Jaźwińska, A, Rushlow, C, Roth, S. The role of brinker in mediating the graded response to dpp in early Drosophila embryos. Development 1999; 126: 3323–3334.
Google Scholar | Crossref | Medline26. Gafner, L, Dalessi, S, Escher, E, Pyrowolakis, G, Bergmann, S, Basler, K. Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients. PLoS One 2013; 8: e71224–e71224.
Google Scholar | Crossref27. Chayengia, M, Veikkolainen, V, Jevtic, M, Pyrowolakis, G. Sequence environment of BMP-dependent activating elements controls transcriptional responses to dpp signaling in Drosophila. Development 2019; 146: dev176107.
Google Scholar | Crossref | Medline28. Maekawa, T, Sakura, H, Sudo, T, Ishii, S. Putative metal finger structure of the human immunodeficiency virus type 1 enhancer binding protein HIV-EP1. J Biol Chem 1989; 264: 14591–14593.
Google Scholar | Crossref | Medline29. Sampath, TK, Rashka, KE, Doctor, JS, Tucker, RF, Hoffmann, FM. Drosophila transforming growth factor beta superfamily proteins induce endochondral bone formation in mammals. Proc Natl Acad Sci U S A 1993; 90: 6004–6008.
Google Scholar | Crossref | Medline30. Padgett, RW, Wozney, JM, Gelbart, WM. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. Proc Natl Acad Sci U S A 1993; 90: 2905–2909.
Google Scholar | Crossref | Medline31. Adams, CM, Anderson, MG, Motto, DG, Price, MP, Johnson, WA, Welsh, MJ. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol 1998; 140: 143–152.
Google Scholar | Crossref | Medline32. Ainsley, JA, Pettus, JM, Bosenko, D, Gerstein, CE, Zinkevich, N, Anderson, MG, Adams, CM, Welsh, MJ, Johnson, WA. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 2003; 13: 1557–1563.
Google Scholar | Crossref | Medline33. Kudron, MM, Victorsen, A, Gevirtzman, L, Hillier, LW, Fisher, WW, Vafeados, D, Kirkey, M, Hammonds, AS, Gersch, J, Ammouri, H, Wall, ML, Moran, J, Steffen, D, Szynkarek, M, Seabrook-Sturgis, S, Jameel, N, Kadaba, M, Patton, J, Terrell, R, Corson, M, Durham, TJ, Park, S, Samanta, S, Han, M, Xu, J, Yan, K-K, Celniker, SE, White, KP, Ma, L, Gerstein, M, Reinke, V, Waterston, RH. The ModERN resource: genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors. Genetics 2018; 208: 937–949.
Google Scholar | Crossref | Medline34. Iyer, EP, Iyer, SC, Sullivan, L, Wang, D, Meduri, R, Graybeal, LL, Cox, DN. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PLoS One 2013; 8: e72434.
Google Scholar | Crossref | Medline35. Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, J-Y, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.
Google Scholar | Crossref | Medline | ISI36. Arganda-Carreras, I, Fernández-González, R, Muñoz-Barrutia, A, Ortiz-De-Solorzano, C. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 2010; 73: 1019–1029.
Google Scholar | Crossref | Medline | ISI37. Doumpas, N, Ruiz ‐Romero, M, Blanco, E, Edgar, B, Corominas, M, Teleman, AA. Brk regulates wing disc growth in part via repression of myc expression. EMBO Rep 2013; 14: 261–268.
Google Scholar | Crossref | Medline38. McCloy, RA, Rogers, S, Caldon, CE, Lorca, T, Castro, A, Burgess, A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014; 13: 1400–1412.
Google Scholar | Crossref | Medline39. R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2020.
Google Scholar40. Grueber, WB, Jan, LY, Jan, YN. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002; 129: 2867–2878.
Google Scholar | Crossref | Medline41. Minami, M, Kinoshita, N, Kamoshida, Y, Tanimoto, H, Tabata, T. Brinker is a target of dpp in Drosophila that negatively regulates dpp-dependent genes. Nature 1999; 398: 242–246.
Google Scholar | Crossref | Medline42. Jaźwińska, A, Kirov, N, Wieschaus, E, Roth, S, Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of dpp target gene regulation. Cell 1999 ; 96: 563–573.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif