Update on Biomarkers in Spinal Muscular Atrophy

1. Pearn, JH . The gene frequency of acute Werdnig-Hoffmann disease (SMA type 1). A total population survey in North-East England. J Med Genet. 1973;10: 260-265.
Google Scholar | Crossref | Medline | ISI2. Sugarman, EA, Nagan, N, Zhu, H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20: 27-32.
Google Scholar | Crossref | Medline | ISI3. Lefebvre, S, Burlet, P, Liu, Q, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997;16: 265-269.
Google Scholar | Crossref | Medline | ISI4. McAndrew, PE, Parsons, DW, Simard, LR, et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997;60: 1411-1422.
Google Scholar | Crossref | Medline | ISI5. Monani, UR, Sendtner, M, Coovert, DD, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000;9: 333-339.
Google Scholar | Crossref | Medline | ISI6. Feldkötter, M, Schwarzer, V, Wirth, R, Wienker, TF, Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70: 358-368.
Google Scholar | Crossref | Medline | ISI7. Elsheikh, B, Prior, T, Zhang, X, et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve. 2009;40: 652-656.
Google Scholar | Crossref | Medline8. Gennarelli, M, Lucarelli, M, Capon, F, et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun. 1995;213: 342-348.
Google Scholar | Crossref | Medline9. Lorson, CL, Hahnen, E, Androphy, EJ, Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA. 1999;96: 6307-6311.
Google Scholar | Crossref | Medline | ISI10. Monani, UR, Lorson, CL, Parsons, DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999;8: 1177-1183.
Google Scholar | Crossref | Medline | ISI11. Cartegni, L, Krainer, AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet. 2002;30: 377-384.
Google Scholar | Crossref | Medline | ISI12. Kashima, T, Manley, JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet. 2003;34: 460-463.
Google Scholar | Crossref | Medline13. Prior, TW, Krainer, AR, Hua, Y, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85: 408-413.
Google Scholar | Crossref | Medline | ISI14. Lorson, CL, Strasswimmer, J, Yao, JM, et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998;19: 63-66.
Google Scholar | Crossref | Medline15. Lorson, CL, Androphy, EJ. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet. 2000;9: 259-265.
Google Scholar | Crossref | Medline | ISI16. Burnett, BG, Muñoz, E, Tandon, A, Kwon, DY, Sumner, CJ, Fischbeck, KH. Regulation of SMN protein stability. Mol Cell Biol. 2009;29: 1107-1115.
Google Scholar | Crossref | Medline | ISI17. Bernal, S, Alias, L, Barcelo, MJ, et al. The c.859G>C variant in the SMN2 gene is associated with types II and III SMA and originates from a common ancestor. J Med Genet. 2010;47: 640-642.
Google Scholar | Crossref | Medline18. Krosschell, KJ, Maczulski, JA, Scott, C, et al.; Project Cure SMA Investigators Network. Reliability and validity of the TIMPSI for infants with spinal muscular atrophy type I. Pediatr Phys Ther. 2013;25: 140-148. discussion 149.
Google Scholar | Crossref | Medline19. Ratni, H, Ebeling, M, Baird, J, et al. Discovery of Risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of Spinal muscular Atrophy (SMA). J Med Chem. 2018;61: 6501-6517.
Google Scholar | Crossref | Medline20. Sturm, S, Günther, A, Jaber, B, et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol. 2019;85: 181-193.
Google Scholar | Crossref | Medline21. Wurster, CD, Ludolph, AC. Nusinersen for spinal muscular atrophy. Ther Adv Neurol Disord. 2018;11: 1756285618754459.
Google Scholar22. Lee, BH, Collins, E, Lewis, L, et al. Combination therapy with nusinersen and AVXS-101 in SMA type 1. Neurology. 2019;93: 640-641.
Google Scholar | Crossref | Medline23. Dabbous, O, Maru, B, Jansen, JP, et al. Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv Ther. 2019;36: 1164-1176.
Google Scholar | Crossref | Medline24. Lefebvre, S, Bürglen, L, Reboullet, S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80: 155-165.
Google Scholar | Crossref | Medline | ISI25. Bürglen, L, Lefebvre, S, Clermont, O, et al. Structure and organization of the human survival motor neurone (SMN) gene. Genomics. 1996;32: 479-482.
Google Scholar | Crossref | Medline | ISI26. Schrank, B, Götz, R, Gunnersen, JM, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA. 1997;94: 9920-9925.
Google Scholar | Crossref | Medline27. Hahnen, E, Schönling, J, Rudnik-Schöneborn, S, Zerres, K, Wirth, B. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am J Hum Genet. 1996;59: 1057-1065.
Google Scholar | Medline28. Campbell, L, Potter, A, Ignatius, J, Dubowitz, V, Davies, K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet. 1997;61: 40-50.
Google Scholar | Crossref | Medline29. Wirth, B, Herz, M, Wetter, A, et al. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet. 1999;64: 1340-1356.
Google Scholar | Crossref | Medline30. Mailman, MD, Heinz, JW, Papp, AC, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002;4: 20-26.
Google Scholar | Crossref | Medline | ISI31. Kolb, SJ, Coffey, CS, Yankey, JW, et al.; NeuroNEXT Clinical Trial Network and on behalf of the NN101 SMA Biomarker Investigators. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016;3: 132-145.
Google Scholar | Crossref | Medline32. Kolb, SJ, Coffey, CS, Yankey, JW, et al.; the NeuroNEXT Clinical Trial Network on behalf of the NN101 SMA Biomarker Investigators. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82: 883-891.
Google Scholar | Crossref | Medline33. Vezain, M, Saugier-Veber, P, Goina, E, et al. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum Mutat. 2010;31: E1110-E1125.
Google Scholar | Crossref | Medline34. Qu, YJ, Bai, JL, Cao, YY, et al. A rare variant (c.863G>T) in exon 7 of SMN1 disrupts mRNA splicing and is responsible for spinal muscular atrophy. Eur J Hum Genet. 2016;24: 864-870.
Google Scholar | Crossref | Medline35. Stenson, PD, Mort, M, Ball, EV, Shaw, K, Phillips, AD, Cooper, DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133: 1-9.
Google Scholar | Crossref | Medline | ISI36. Wu, S, Li, Y-L, Cheng, N-Y, et al.835-5T>G variant in SMN1 gene causes transcript exclusion of exon 7 and spinal muscular atrophy. J Mol Neurosci. 2018;65: 196-202.
Google Scholar | Crossref | Medline37. Parsons, DW, McAndrew, PE, Iannaccone, ST, Mendell, JR, Burghes, AH, Prior, TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet. 1998;63: 1712-1723.
Google Scholar | Crossref | Medline38. Stratigopoulos, G, Lanzano, P, Deng, L, et al. Association of plastin 3 expression with disease severity in spinal muscular atrophy only in postpubertal females. Arch Neurol. 2010;67: 1252-1256.
Google Scholar | Crossref | Medline39. Yanyan, C, Yujin, Q, Jinli, B, Yuwei, J, Hong, W, Fang, S. Correlation of PLS3 expression with disease severity in children with spinal muscular atrophy. J Hum Genet. 2014;59: 24-27.
Google Scholar | Crossref | Medline40. McGovern, VL, Massoni-Laporte, A, Wang, X, et al. Plastin 3 expression does not modify spinal muscular atrophy severity in the ∆7 SMA mouse. PLoS One. 2015;10: e0132364.
Google Scholar | Crossref41. Hosseinibarkooie, S, Peters, M, Torres-Benito, L, et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am J Hum Genet. 2016;99: 647-665.
Google Scholar | Crossref | Medline | ISI42. Riessland, M, Kaczmarek, A, Schneider, S, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet. 2017;100: 297-315.
Google Scholar | Crossref | Medline43. Catapano, F, Zaharieva, I, Scoto, M, et al. Altered levels of MicroRNA-9, -206, and -132 in spinal muscular atrophy and their response to antisense Oligonucleotide therapy. Mol Ther Nucleic Acids. 2016;5: e331.
Google Scholar | Crossref | Medline44. Chen, T-H, Chen, J-A. Multifaceted roles of microRNAs: from motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife. 2019;8: e50848. doi:10.7554/elife.50848
Google Scholar | Crossref45. Chen, T-H . Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord. 2020;13: 1756286420979954.
Google Scholar46. Fenoglio, C, Ridolfi, E, Galimberti, D, Scarpini, E. An emerging role for long non-coding RNA dysregulation in neurological disorders. Int J Mol Sci. 2013;14: 20427-20442.
Google Scholar | Crossref | Medline47. d’Ydewalle, C, Ramos, DM, Pyles, NJ, et al. The antisense transcript SMN-AS1 regulates SMN expression and Is a novel therapeutic target for spinal muscular atrophy. Neuron. 2017;93:

留言 (0)

沒有登入
gif