Effect of Oxidative Stress on Bone Remodeling in Periprosthetic Osteolysis

1.

Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006;77(2):177–97.

PubMed  Article  PubMed Central  Google Scholar 

2.

Labek G, Thaler M, Janda W, Agreiter M, Stockl B. Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Joint Surg Br. 2011;93(3):293–7.

CAS  PubMed  Article  PubMed Central  Google Scholar 

3.

Makela KT, Matilainen M, Pulkkinen P, Fenstad AM, Havelin L, Engesaeter L, et al. Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations. BMJ. 2014;13:348:f7592. https://doi.org/10.1136/bmj.f7592.

4.

Hopper RH Jr, Ho H, Sritulanondha S, Williams AC, Engh CA Jr. Otto Aufranc Award: Crosslinking reduces THA wear, osteolysis, and revision rates at 15-year follow-up compared with noncrosslinked polyethylene. Clin Orthop Relat Res. 2018;476(2):279–90.

5.

Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Bohler N, Labek G. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty. 2013;28(8):1329–32.

6.

Doro C, Dimick J, Wainess R, Upchurch G, Urquhart A. Hospital volume and inpatient mortality outcomes of total hip arthroplasty in the United States. J Arthroplasty. 2006;21(6 Suppl 2):10–6.

7.

Mahomed NN, Barrett JA, Katz JN, Phillips CB, Losina E, Lew RA, et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. J Bone Joint Surg Am. 2003;85(1):27–32.

PubMed  Article  PubMed Central  Google Scholar 

8.

Zhan C, Kaczmarek R, Loyo-Berrios N, Sangl J, Bright RA. Incidence and short-term outcomes of primary and revision hip replacement in the United States. J Bone Joint Surg Am. 2007;89(3):526–33.

PubMed  Article  PubMed Central  Google Scholar 

9.

Harris WH. Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res. 2001;393:66–70.

Article  Google Scholar 

10.

Jasty M, Smith E. Wear particles of total joint replacements and their role in periprosthetic osteolysis. Curr Opin Rheumatol. 1992;4(2):204–9.

CAS  PubMed  Article  PubMed Central  Google Scholar 

11.

Kadoya Y, Kobayashi A, Ohashi H. Wear and osteolysis in total joint replacements. Acta Orthop Scand Suppl. 1998;278:1–16.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;1:8(12). https://doi.org/10.3390/jcm8122091.

13.

Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater. 2019;2.

14.

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

CAS  PubMed  Article  PubMed Central  Google Scholar 

15.

Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–33.

CAS  PubMed  Article  PubMed Central  Google Scholar 

16.

Tian Y, Ma X, Yang C, Su P, Yin C, Qian AR. The impact of oxidative stress on the bone system in response to the space special environment. Int J Mol Sci. 2017;12(10)18.

17.

Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797.

PubMed  PubMed Central  Article  CAS  Google Scholar 

18.

Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.

CAS  PubMed  Article  PubMed Central  Google Scholar 

19.

Kinov P, Leithner A, Radl R, Bodo K, Khoschsorur GA, Schauenstein K, et al. Role of free radicals in aseptic loosening of hip arthroplasty. J Orthop Res. 2006;24(1):55–62.

CAS  PubMed  Article  PubMed Central  Google Scholar 

20.

Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6).

21.

Boyce BF, Rosenberg E, de Papp AE, Duong LT. The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest. 2012;42(12):1332–41.

CAS  PubMed  Article  PubMed Central  Google Scholar 

22.

Banfi G, Iorio EL, Corsi MM. Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med. 2008;46(11):1550–5.

CAS  PubMed  Article  PubMed Central  Google Scholar 

23.

Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009;44(6):1026–33.

PubMed  Article  PubMed Central  Google Scholar 

24.

Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

CAS  PubMed  Article  PubMed Central  Google Scholar 

25.

Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34.

CAS  PubMed  Article  PubMed Central  Google Scholar 

26.

Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209–16.

27.

Menale C, Robinson LJ, Palagano E, Rigoni R, Erreni M, Almarza AJ, et al. Absence of dipeptidyl peptidase 3 increases oxidative stress and causes bone loss. J Bone Miner Res. 34(11):2133–48.

28.

Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

CAS  PubMed  PubMed Central  Article  Google Scholar 

29.

Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology. 2005;146(2):728–35.

CAS  PubMed  Article  PubMed Central  Google Scholar 

30.

Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–349.

CAS  PubMed  Article  PubMed Central  Google Scholar 

31.

Lippross S, Beckmann R, Streubesand N, Ayub F, Tohidnezhad M, Campbell G, et al. Nrf2 deficiency impairs fracture healing in mice. Calcif Tissue Int. 2014;95(4):349–61.

CAS  PubMed  Article  PubMed Central  Google Scholar 

32.

Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97.

CAS  PubMed  Article  Google Scholar 

33.

Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.

PubMed  PubMed Central  Article  CAS  Google Scholar 

34.

Jilka RL, Noble B, Weinstein RS. Osteocyte apoptosis. Bone. 2013;54(2):264–71.

PubMed  Article  PubMed Central  Google Scholar 

35.

Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007;21(11):2605–14.

CAS  PubMed  Article  PubMed Central  Google Scholar 

36.

Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26(11):2682–94.

CAS  PubMed  Article  PubMed Central  Google Scholar 

37.

Morikawa D, Nojiri H, Saita Y, Kobayashi K, Watanabe K, Ozawa Y, et al. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res. 2013;28(11):2368–80.

CAS  PubMed  Article  PubMed Central  Google Scholar 

38.

Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2019;105(3):927–40.

Article  CAS  Google Scholar 

39.

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

CAS  PubMed  Article  Google Scholar 

40.

Jones JA, McNally AK, Chang DT, Qin LA, Meyerson H, Colton E, et al. Matrix metalloproteinases and their inhibitors in the foreign body reaction on biomaterials. J Biomed Mater Res A. 2008;84(1):158–66.

PubMed  Article  CAS  PubMed Central  Google Scholar 

41.

van Luyn MJ, Plantinga JA, Brouwer LA, Khouw IM, de Leij LF, van Wachem PB. Repetitive subcutaneous implantation of different types of (biodegradable) biomaterials alters the foreign body reaction. Biomaterials. 2001;22(11):1385–91.

PubMed  Article  PubMed Central  Google Scholar 

42.

Mariani E, Lisignoli G, Borzi RM, Pulsatelli L. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci. 2019;1:20(3).

43.

Vasconcelos DP, Aguas AP, Barbosa MA, Pelegrin P, Barbosa JN. The inflammasome in host response to biomaterials: bridging inflammation and tissue regeneration. Acta Biomater. 2019;1(83):1–12.

Article  CAS  Google Scholar 

44.

Frazao LP, Vieira de Castro J, Neves NM. In Vivo Evaluation of the biocompatibility of biomaterial device. Adv Exp Med Biol. 2020;1250:109–24.

45.

Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671–701.

CAS  Article  Google Scholar 

46.

Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A. 2007;83(3):585–96.

PubMed  Article  CAS  PubMed Central  Google Scholar 

47.

Collier TO, Anderson JM, Kikuchi A, Okano T. Adhesion behavior of monocytes, macrophages, and foreign body giant cells on poly (N-isopropylacrylamide) temperature-responsive surfaces. J Biomed Mater Res. 2002;59(1):136–43.

CAS 

Comments (0)

No login
gif