Limb Preference and Limb Bone Mineral Density: an Overview of Empirical Findings

Grouios G, Kollias N, Tsorbatzoudis H, Alexandris K. Over-representation of mixed-footedness among professional and semi-professional soccer players: an innate superiority or a strategic advantage? J Hum Mov Stud. 2002;42:19–29.

Google Scholar 

Grouios G. Motoric dominance and sporting excellence: training versus heredity. Percept Mot Skills. 2017;98:53–66.

Article  Google Scholar 

Grouios G. Right hand advantage in visually guided reaching and aiming movements: brief review and comments. Ergonomics. 2006;49:1013–7.

Article  Google Scholar 

Grouios G, Tsorbatzoudis H, Alexandris K, Barkoukis V. Do left-handed competitors have an innate superiority in sports? Percept Mot Skills. 2000;90:1273–82.

Article  CAS  Google Scholar 

Annett M. The distribution of manual asymmetry. Br J Psychol. 1972;63:343–58.

Article  CAS  Google Scholar 

Falk D. Brain lateralization in primates and its evolution in hominids. Am J Phys Anthropol. 1987;30:107–25.

Article  Google Scholar 

Corballis MC, Badzakova-Trajkov G, Häberling IS. Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdiscip Rev Cogn Sci. 2012;3:1–17.

Article  Google Scholar 

McManus C. Right hand, left hand: the origins of asymmetry in brains, bodies, atoms and cultures. Cambridge, MA: Harvard University Press; 2002.

Google Scholar 

Grouios G. Footedness as a potential factor that contributes to the causation of corn and callus formation in lower extremities of physically active individuals. Foot. 2005;15:154–62.

Article  Google Scholar 

Grouios G, Hatzitaki V, Kollias N, Koidou I. Investigating the stabilizing and mobilizing features of footedness. Laterality. 2009;14:362–80.

Article  Google Scholar 

Gabbard C, Hart S. A question of foot dominance. J Gen Psychol. 1996;123:289–96.

Article  CAS  Google Scholar 

Hart S, Gabbard C. Examining the stabilizing characteristics of footedness. Laterality. 1997;2:17–26.

Article  CAS  Google Scholar 

Hart S, Gabbard C. Examining the mobilizing feature of footedness. Percept Mot Skills. 1998;86:1339–42.

Article  CAS  Google Scholar 

Carey DP, Smith DT, Martin D, Smith G, Skriver J, Rutland A, et al. The bi-pedal ape: plasticity and asymmetry in footedness. Cortex. 2009;45:650–61.

Article  Google Scholar 

Grouios G, Kollias N, Koidou I, Poderi A. Excess of mixed-footedness among professional soccer players. Percept Mot Skills. 2002;94:695–9.

Article  Google Scholar 

Grouios G, Koidou I, Tsorbatzoudis H, Alexandris K. Handedness in sport. J Hum Mov Stud. 2002;43:347–61.

Google Scholar 

Auerbach B, Ruff C. Limb bone bilateral asymmetry: variability and commonality among modern humans. J Hum Evol. 2006;50:203–18.

Article  Google Scholar 

Latimer HB, Lowrance EW. Bilateral asymmetry in weight and in length of human bones. Anat Rec. 1965;152:217–24.

Article  CAS  Google Scholar 

Schultz AH. Proportions, variability and asymmetries of the long bones of the limbs and the clavicles in man and apes. Hum Biol. 1937;9:281–328.

Google Scholar 

Lazenby R. Skeletal biology, functional asymmetry and the origins of “Handedness.” J Theor Biol. 2002;218:129–38.

Article  Google Scholar 

Steele J. Handedness in past human populations: skeletal markers. Laterality. 2000;5:193–220.

Article  CAS  Google Scholar 

Steele J. Skeletal indicators of handedness. In: Cox M, Mays S, editors. Human osteology in archaeology and forensic science. New York: Cambridge University Press; 2000. p. 307–23.

Google Scholar 

Steele J, Mays S. Handedness and directional asymmetry in the long bones of the human upper limb. Int J Osteoarchaeol. 1995;5:39–49.

Article  Google Scholar 

Ruff C. Biomechanical analyses of archaeological human skeletons. In: Katzenberg MA, Saunders SR, editors. Biological Anthropology of the Human Skeleton. 2nd ed. New Jersey: Willey-Liss; 2008. p. 183–206.

Chapter  Google Scholar 

Shaw C. Is, “hand preference” coded in the hominin skeleton? An in-vivo study of bilateral morphological variation. J Hum Evol. 2011;61:480–7.

Article  Google Scholar 

Auerbach B, Raxter M. Patterns of clavicular bilateral asymmetry in relation to the humerus: variation among humans. J Hum Evol. 2008;54:663–74.

Article  Google Scholar 

Currey JD. The structure of bone tissue. In: Currey JD, editor. Bones: structure and mechanics. Princeton: Princeton University Press; 2002. p. 3–26.

Chapter  Google Scholar 

Lanyon L, Skerry T. Perspective: postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis*. J Bone Miner Res. 2001;16:1937–47.

Article  CAS  Google Scholar 

Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.

Article  Google Scholar 

Kanchan T, Kumar TSM, Kumar GP, Yoganarasimha K. Skeletal asymmetry. J Forensic Leg Med. 2008;15:177–9.

Article  Google Scholar 

Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol. 2006;129:484–98.

Article  Google Scholar 

Sahin A, Dane S, Seven B, Akar S, Yildirim S. Differences by sex and handedness in right and left femur bone mineral densities. Percept Mot Skills. 2009;109:824–30.

Article  Google Scholar 

Taaffe D, Lewis B, Marcus R. Quantifying the effect of hand preference on upper limb bone mineral and soft tissue composition in young and elderly women by dual-energy X-ray absorptiometry. Clin Physiol. 1994;14:393–404.

Article  CAS  Google Scholar 

Tsorlakis N, Grouios G, Tsorbatzoudis H, Hatzitaki V. Footedness related differences in femoral bone mineral density in elderly women with osteoporosis. Int J Neurosci. 2020;130(1):97–102.

Article  Google Scholar 

Frost H. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec. 1990;226:403–13.

Frost H. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec. 1990;226:414–22.

Huiskes R. If bone is the answer, then what is the question? J Anat. 2000;197:145–56.

Article  Google Scholar 

Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res. 2000;15:1596–602.

Article  CAS  Google Scholar 

Wolff J. Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald; 1892.

Google Scholar 

Wolff J. The law of bone remodelling. Berlin: Springer Verlag; 1986.

Book  Google Scholar 

Bertram JEA, Swartz SM. The ‘law of bone transformation’: a case of crying Wolff? Biol Rev. 1991;66:245–73.

Article  CAS  Google Scholar 

Cowin SC. Bone mechanics handbook. 2nd ed. Boca Raton: CRC Press; 2001.

Book  Google Scholar 

Frost H. Bone, “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.

Article  CAS  Google Scholar 

Frost H. Changing concepts in skeletal physiology: Wolff’s Law, the Mechanostat, and the Utah paradigm? Am J Hum Biol. 1998;10:599–605.

Article  Google Scholar 

Frost H. From Wolff’s law to the mechanostat: a new “face” of physiology. J Orthop Sci. 1998;3:282–6.

Article  CAS  Google Scholar 

Frost H. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275:1081–101.

Article  Google Scholar 

Frost H. A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 2004;74:3–15.

Google Scholar 

Jee W. Frost’s Legacy. The Utah paradigm of skeletal physiology. Niigata J Heal Welf. 2006;6:1–9.

Jee W. Principles in bone physiology. J Musculoskelet Neuronal Interact. 2000;1:11–3.

CAS  Google Scholar 

Kohrt WM, Barry DW, Schwartz RS. Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc. 2009;41:2050–5.

Article  Google Scholar 

Beck BR. Muscle forces or gravity–what predominates mechanical loading on bone? Introduction Med Sci Sports Exerc. 2009;41:2033–6.

Article  Google Scholar 

Robling AG. Is bone’s response to mechanical signals dominated by muscle forces? Med Sci Sports Exerc. 2009;41:2044–9.

Article  Google Scholar 

MacIntyre NJ, Adachi JD, Webber CE. In vivo detection of structural differences between dominant and nondominant radii using peripheral quantitative computed tomography. J Clin Densitom. 1999;2:413–22.

Article  CAS  Google Scholar 

Chilibeck PD, Davison KS, Sale DG, Webber CE, Faulkner RA. Effect of physical activity on bone mineral density assessed by limb dominance across the lifespan. Am J Hum Biol. 2000;12:633–7.

Article  Google Scholar 

Akar S, Sivrikaya H, Canikli A, Varoglu E. Lateralized mineral content and density in distal forearm bones in right-handed men and women: relation of structure to function. Int J Neurosci. 2002;112:301–11.

Article  Google Scholar 

Lekamwasam S, Rodrigo M, de Silva KIS, Munidasa D. Comparison of phalangeal bone mineral content and density between the dominant and non-dominant sides. Ceylon Med J. 2005;50:149–51.

Article  CAS 

留言 (0)

沒有登入
gif