Voxel-based quantitative susceptibility mapping revealed increased cerebral iron over the whole brain in chronic migraine

1. Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 3rd edition. Cephalalgia 2018; 38: 1–211.
Google Scholar | SAGE Journals2. Natoli, JL, Manack, A, Dean, B, Butler, Q, Turkel, CC, Stovner, L, Lipton, RB. Global prevalence of chronic migraine: a systematic review. Cephalalgia 2010; 30: 599–609.
Google Scholar | SAGE Journals | ISI3. Lipton, RB, Fanning, KM, Serrano, D, Reed, ML, Cady, R, Buse, DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology 2015; 84: 688–695.
Google Scholar | Crossref | Medline | ISI4. Charles, A. The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17: 174–182.
Google Scholar | Crossref | Medline5. Jia, Z, Yu, S. Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin 2017; 14: 130–140.
Google Scholar | Crossref | Medline6. Liu, H, Ge, H, Xiang, J, Miao, A, Tang, L, Wu, T, Chen, Q, Yang, L, Wang, X. Resting state brain activity in patients with migraine: a magnetoencephalography study. J Headache Pain 2015; 16: 525.
Google Scholar | Crossref | Medline7. Zhuo, M. A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol Cells 2007; 23: 259–271.
Google Scholar | Medline8. Palm-Meinders, IH, Koppen, H, Terwindt, GM, Launer, LJ, van Buchem, MA, Ferrari, MD, Kruit, MC. Iron in deep brain nuclei in migraine? CAMERA follow-up MRI findings. Cephalalgia 2017; 37: 795–800.
Google Scholar | SAGE Journals | ISI9. Kruit, MC, Launer, LJ, Overbosch, J, van Buchem, MA, Ferrari, MD. Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study. Cephalalgia 2009; 29: 351–359.
Google Scholar | SAGE Journals | ISI10. Tepper, SJ, Lowe, MJ, Beall, E, Phillips, MD, Liu, K, Stillman, MJ, Horvat, M, Jones, SE. Iron deposition in pain-regulatory nuclei in episodic migraine and chronic daily headache by MRI. Headache 2012; 52: 236–243.
Google Scholar | Crossref | Medline | ISI11. Dominguez, C, Lopez, A, Ramos-Cabrer, P, Vieites-Prado, A, Perez-Mato, M, Villalba, C, Sobrino, T, Rodriguez-Osorio, X, Campos, F, Castillo, J, Leira, R. Iron deposition in periaqueductal gray matter as a potential biomarker for chronic migraine. Neurology 2019; 92: e1076–e1085.
Google Scholar | Crossref | Medline12. Welch, KM, Nagesh, V, Aurora, SK, Gelman, N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 2001; 41: 629–637.
Google Scholar | Crossref | Medline | ISI13. Liu, C, Wei, H, Gong, NJ, Cronin, M, Dibb, R, Decker, K. Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography 2015; 1: 3–17.
Google Scholar | Crossref | Medline14. Langkammer, C, Schweser, F, Krebs, N, Deistung, A, Goessler, W, Scheurer, E, Sommer, K, Reishofer, G, Yen, K, Fazekas, F, Ropele, S, Reichenbach, JR. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 2012; 62: 1593–1599.
Google Scholar | Crossref | Medline | ISI15. Kruit, MC, van Buchem, MA, Launer, LJ, Terwindt, GM, Ferrari, MD. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia 2010; 30: 129–136.
Google Scholar | SAGE Journals | ISI16. Dixon, SJ, Stockwell, BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10: 9–17.
Google Scholar | Crossref | Medline | ISI17. Dai, L, Yu, Y, Zhao, H, Zhang, X, Su, Y, Wang, X, Hu, S, Dai, H, Hu, C, Ke, J. Altered local and distant functional connectivity density in chronic migraine: a resting-state functional MRI study. Neuroradiology 2021; 63: 555–562.
Google Scholar | Crossref | Medline18. Chen, WT, Chou, KH, Lee, PL, Hsiao, FJ, Niddam, DM, Lai, KL, Fuh, JL, Lin, CP, Wang, SJ. Comparison of gray matter volume between migraine and “strict-criteria” tension-type headache. J Headache Pain 2018; 19: 4.
Google Scholar | Crossref | Medline19. Goffaux, P, Girard-Tremblay, L, Marchand, S, Daigle, K, Whittingstall, K. Individual differences in pain sensitivity vary as a function of precuneus reactivity. Brain Topogr 2014; 27: 366–374.
Google Scholar | Crossref | Medline20. Bantick, SJ, Wise, RG, Ploghaus, A, Clare, S, Smith, SM, Tracey, I. Imaging how attention modulates pain in humans using functional MRI. Brain 2002; 125: 310–319.
Google Scholar | Crossref | Medline | ISI21. Koyama, T, McHaffie, JG, Laurienti, PJ, Coghill, RC. The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci U S A 2005; 102: 12950–12955.
Google Scholar | Crossref | Medline | ISI22. Seminowicz, DA, Davis, KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 2006; 120: 297–306.
Google Scholar | Crossref | Medline | ISI23. Almeida, TF, Roizenblatt, S, Tufik, S. Afferent pain pathways: a neuroanatomical review. Brain Res 2004; 1000: 40–56.
Google Scholar | Crossref | Medline24. Reed, CL, Caselli, RJ. The nature of tactile agnosia: a case study. Neuropsychologia 1994; 32: 527–539.
Google Scholar | Crossref | Medline25. Lee, MJ, Park, BY, Cho, S, Kim, ST, Park, H, Chung, CS. Increased connectivity of pain matrix in chronic migraine: a resting-state functional MRI study. J Headache Pain 2019; 20: 29.
Google Scholar | Crossref | Medline26. Seminowicz, DA, Moayedi, M. The dorsolateral prefrontal cortex in acute and chronic pain. J Pain 2017; 18: 1027–1035.
Google Scholar | Crossref | Medline27. Hubbard, CS, Khan, SA, Keaser, ML, Mathur, VA, Goyal, M, Seminowicz, DA. Altered brain structure and function correlate with disease severity and pain catastrophizing in migraine patients. eNeuro 2014; 1: e2014.
Google Scholar | Crossref28. Marques, JP, Maddage, R, Mlynarik, V, Gruetter, R. On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T. Neuroimage 2009; 46: 345–352.
Google Scholar | Crossref | Medline | ISI29. Rockwell, DT, Melhem, ER, Bhatia, RG. GRASE (gradient- and spin-echo) MR of the brain. AJNR Am J Neuroradiol 1997; 18: 1923–1928.
Google Scholar | Medline | ISI

Comments (0)

No login
gif