Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) Pparγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566. https://doi.org/10.1038/nm.3159
Article CAS PubMed Google Scholar
Akinsemolu AA, Onyeaka H, Odion S, Adebanjo I (2024) Exploring Bacillus subtilis: ecology, biotechnological applications, and future prospects. J Basic Microbiol 64:e2300614. https://doi.org/10.1002/jobm.202300614
Alnuaimi S, Reljic T, Abdulla FS, Memon H, Al-Ali S, Smith T, Serdarevic F, Velija Asimi Z, Kumar A, Semiz S (2024) PPAR agonists as add-on treatment with metformin in management of type 2 diabetes: a systematic review and meta-analysis. Sci Rep 14:8809. https://doi.org/10.1038/s41598-024-59390-z
Article CAS PubMed PubMed Central Google Scholar
Bae SH, Kwon MJ, Park JB, Kim D, Kim D, Kang J, Kim C, Oh E, Bae SK (2014) Metabolic drug-drug interaction potential of macrolactin A and 7-O-succinyl macrolactin A assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro. Antimicrob Agents Chemother 58:5036–5046. https://doi.org/10.1128/aac.00018-14
Article PubMed PubMed Central Google Scholar
Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435. https://doi.org/10.1146/annurev.med.53.082901.104018
Article CAS PubMed Google Scholar
Bernardes A, Souza PCT, Muniz JRC, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DBB, Reinach P, Webb P, Skaf MS, Polikarpov I (2013) Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol 425:2878–2893. https://doi.org/10.1016/j.jmb.2013.05.010
Article CAS PubMed Google Scholar
Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366. https://doi.org/10.1210/endo.137.1.8536636
Article CAS PubMed Google Scholar
Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, Nettles KW, Griffin PR (2007) Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure 15:1258–1271. https://doi.org/10.1016/j.str.2007.07.014
Article CAS PubMed Google Scholar
Chiarelli F, Di Marzio D (2008) Peroxisome proliferator-activated receptor-γ agonists and diabetes: current evidence and future perspectives. Vasc Health Risk Manag 4:297–304. https://doi.org/10.2147/vhrm.s993
Article CAS PubMed PubMed Central Google Scholar
Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M, Griffin PR, Spiegelman BM (2010) Obesity-linked phosphorylation of PPARγ by cdk5 is a direct target of the anti-diabetic PPARγ ligands. Nature 466:451–456. https://doi.org/10.1038/nature09291
Article CAS PubMed PubMed Central Google Scholar
D’Aniello F, Zampella A (2022) Marine natural and nature-inspired compounds targeting peroxisome proliferator activated receptors (PPARs). Mar Drugs 20:36. https://doi.org/10.3390/md20010036
de Groot JC, Weidner C, Krausze J, Kawamoto K, Schroeder FC, Sauer S, Büssow K (2013) Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor γ. J Med Chem 56:1535–1543. https://doi.org/10.1021/jm3013272
Article CAS PubMed Google Scholar
Gelman L, Feige JN, Desvergne B (2007) Molecular basis of selective PPARγ modulation for the treatment of type 2 diabetes. Biochim Biophys Acta 1771:1094–1107. https://doi.org/10.1016/j.bbalip.2007.03.004
Article CAS PubMed Google Scholar
Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10:365–376. https://doi.org/10.1038/nri2748
Article CAS PubMed Google Scholar
Gregoire FM, Zhang F, Clarke HJ, Gustafson TA, Sears DD, Favelyukis S, Lenhard J, Rentzeperis D, Clemens LE, Mu Y, Lavan BE (2009) MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol Endocrinol 23:975–988. https://doi.org/10.1210/me.2008-0473
Article CAS PubMed PubMed Central Google Scholar
Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111:7519–7524. https://doi.org/10.1021/ja00201a036
Han EJ, Lee SR, Hoshino S, Seyedsayamdost MR (2022) Targeted discovery of cryptic metabolites with antiproliferative activity. ACS Chem Biol 17:3121–3130. https://doi.org/10.1021/acschembio.2c00588
Article CAS PubMed PubMed Central Google Scholar
Han EJ, Jeong M, Lee SR, Sorensen EJ, Seyedsayamdost MR (2024) Hirocidins, cytotoxic metabolites from Streptomyces hiroshimensis, induce mitochondrion-mediated apoptosis. Angew Chem Int Ed Engl 63:e202405367. https://doi.org/10.1002/anie.202405367
Article CAS PubMed Google Scholar
Heneka MT, Landreth GE (2007) Ppars in the brain. Biochim Biophys Acta 1771:1031–1045. https://doi.org/10.1016/j.bbalip.2007.04.016
Article CAS PubMed Google Scholar
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A (2023) Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: a comprehensive review. Molecules 28:927. https://doi.org/10.3390/molecules28030927
Article CAS PubMed PubMed Central Google Scholar
Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, Kittakoop P, Menasveta P (2000) New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod 637:984–986. https://doi.org/10.1021/np990605c
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA (2015) Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 38:249–260. https://doi.org/10.1007/s12272-014-0535-x
Article CAS PubMed Google Scholar
Kaspar F, Neubauer P, Gimpel M (2019) Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J Nat Prod 82:2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
Article CAS PubMed Google Scholar
Kim DH, Kim HK, Kim KM, Kim CK, Jeong MH, Ko CY, Moon KH, Kang JS (2011) Antibacterial activities of macrolactin A and 7-O-succinyl macrolactin A from Bacillus polyfermenticus KJS-2 against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Arch Pharm Res 34:147–152. https://doi.org/10.1007/s12272-011-0117-0
Article CAS PubMed Google Scholar
Kim EN, Gao M, Choi H, Jeong GS (2020) Marine microorganism-derived macrolactins inhibit inflammatory mediator effects in LPS-induced macrophage and microglial cells by regulating BACH1 and HO-1/Nrf2 signals through inhibition of TLR4 activation. Molecules 25:656–669. https://doi.org/10.3390/molecules25030656
Article CAS PubMed PubMed Central Google Scholar
Lee SR, Seyedsayamdost MR (2022) Induction of diverse cryptic fungal metabolites by steroids and channel blockers. Angew Chem Int Ed Engl 61:e202204519. https://doi.org/10.1002/anie.202204519
Article CAS PubMed PubMed Central Google Scholar
Lee SJ, Cho JY, Cho JI, Moon JH, Park KD, Lee YJ, Park KH (2004) Isolation and characterization of antimicrobial substance macrolactin A produced from Bacillus amyloliquefaciens CHO104 isolated from soil. J Microbiol Biotechnol 14:525–531
Comments (0)