Resistome and Resistance Mechanisms of Clade IV: A Systematic Review

Vitiello A, Ferrara F, Boccellino M, Ponzo A, Cimmino C, Comberiati E et al. Antifungal drug resistance: an emergent health threat. Biomedicines. 2023; 11:41063. https://doi.org/10.3390/biomedicines11041063

Bouz G, Doležal M. Advances in antifungal drug development: an up-to-date mini review. Pharmaceuticals. 2021;14:121312. https://doi.org/10.3390/ph14121312

Article  CAS  Google Scholar 

Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear Canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41–4. https://doi.org/10.1111/j.1348-0421.2008.00083.x

Article  CAS  PubMed  Google Scholar 

Mayr EM, Ramírez-Zavala B, Krüger I, Morschhäuser J. A zinc cluster transcription factor contributes to the intrinsic fluconazole resistance of Candida auris. mSphere. 2020; 5:2. https://doi.org/10.1128/msphere.00279-20

Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. MBio. 2020;11:2. https://doi.org/10.1128/mbio.03364-19

Article  CAS  Google Scholar 

Vélez N, Argel A, Kissmann AK, Alpízar-Pedraza D, Escandón P, Rosenau F, et al. Pore-forming peptide C14R exhibits potent antifungal activity against clinical isolates of Candida albicans and Candida auris. Front Cell Infect Microbiol. 2024;14:1389020. https://doi.org/10.3389/fcimb.2024.1389020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9:1. https://doi.org/10.1038/s41467-018-07779-6

Article  CAS  Google Scholar 

World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization; 2022.

Google Scholar 

Jones CR, Neill C, Borman AM, Budd EL, Cummins M, Fry C, et al. The laboratory investigation, management, and infection prevention and control of Candida auris: a narrative review to inform the 2024 National guidance update in England. J Med Microbiol. 2024;73:5001820. https://doi.org/10.1099/jmm.0.001820

Article  Google Scholar 

Riera FO, Caeiro JP, Angiolini SC, Vigezzi C, Rodriguez E, Icely PA, Sotomayor CE. Invasive candidiasis: update and current challenges in the management of this mycosis in South America. Antibiotics. 2022;117:877. https://doi.org/10.3390/antibiotics11070877

Article  CAS  Google Scholar 

Rybak JM, Cuomo CA, Rogers PD. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Curr Opin Microbiol. 2022;70:102208. https://doi.org/10.1016/j.mib.2022.102208

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A. Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. MBio. 2022;13:4:e00842–22. https://doi.org/10.1128/mbio.00842-22

Article  CAS  Google Scholar 

Castanheira M, Deshpande LM, Rhomberg PR, Carvalhaes CG. Recent increase in Candida auris frequency in the SENTRY surveillance program: antifungal activity and genotypic characterization. Antimicrob Agents Chemother. 2024;68:10: e00570–24. https://doi.org/10.1128/aac.00570-24

Article  CAS  PubMed  PubMed Central  Google Scholar 

Healey KR, Kordalewska M, Jiménez-Ortigosa C, Singh A, Berrío I, Chowdhary A, Perlin DS. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced Azole susceptibility. Antimicrob Agents Chemother. 2018;62:10. https://doi.org/10.1128/AAC.01427-18

Article  Google Scholar 

Misas E, Escandón PL, Gade L, Caceres DH, Hurst S, Le N, Chow NA. Genomic epidemiology and antifungal-resistant characterization of Candida auris, colombia, 2016–2021. Msphere. 2024;9(2):e00577–23. https://doi.org/10.1128/msphere.00577-23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomé LMR, Camargo DRA, Bastos RW, Dos Santos SCF, Guimarães NR, Pedroso SH et al. Emergence of Candida auris in Minas gerais, brazil: genomic surveillance to inform rapid public health responses. bioRxiv. 2024; https://doi.org/10.1101/2024.12.13.627932

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–40. https://doi.org/10.1093/cid/ciw691

Article  CAS  PubMed  Google Scholar 

Casimiro-Ramos A, Bautista-Crescencio C, Vidal-Montiel A, González GM, Hernández-García JA, Hernández-Rodríguez C, Villa-Tanaca L. Comparative genomics of the first resistant Candida auris strain isolated in mexico: phylogenomic and Pan-Genomic analysis and mutations associated with antifungal resistance. J Fungi. 2024;10:6392. https://doi.org/10.3390/jof10060392

Article  CAS  Google Scholar 

Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, et al. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics. 2021;218(1):iyab029. https://doi.org/10.1093/genetics/iyab029

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Xu J. Associations between genomic variants and antifungal susceptibilities in the archived global Candida auris population. J Fungi. 2024;10:186. https://doi.org/10.3390/jof10010086

Article  CAS  Google Scholar 

Naicker SD, Maphanga TG, Chow NA, Allam M, Kwenda S, Ismail A, Govender NP. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg Microbes Infect. 2021;10(1):1300–8. https://doi.org/10.1080/22221751.2021.1944323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maphanga TG, Naicker SD, Kwenda S, Muñoz JF, van Schalkwyk E, Wadula J, et al. In vitro antifungal resistance of Candida auris isolates from bloodstream infections, South Africa. Antimicrob Agents Chemother. 2021;65(9):10–1128. https://doi.org/10.1128/aac.00517-21

Article  CAS  Google Scholar 

Kekana D, Naicker SD, Shuping L, Velaphi S, Nakwa FL, Wadula J, Govender NP. Candida auris clinical isolates associated with outbreak in neonatal unit of tertiary academic hospital, South Africa. Emerg Infect Dis. 2023;29:102044. https://doi.org/10.3201/eid2910.230181

Article  Google Scholar 

Oladele R, Uwanibe JN, Olawoye IB, Ettu AWO, Meis JF, Happi CT. Emergence and genomic characterization of multidrug resistant Candida auris in nigeria, West Africa. J Fungi. 2022;8:8787. https://doi.org/10.3390/jof8080787

Article  CAS  Google Scholar 

Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. MBio. 2020;11(3):10–1128. https://doi.org/10.1128/mBio.00699-20

Article  Google Scholar 

Li J, Coste AT, Liechti M, Bachmann D, Sanglard D, Lamoth F. Novel ERG11 and TAC1b mutations associated with Azole resistance in Candida auris. Antimicrob Agents Chemother. 2021;65(5):10–1128. https://doi.org/10.1128/AAC.02663-20

Article  Google Scholar 

Li J, Aubry L, Brandalise D, Coste AT, Sanglard D, Lamoth F. Upc2-mediated mechanisms of Azole resistance in Candida auris. Microbiol Spectr. 2024;12(2):e03526–23. https://doi.org/10.1128/spectrum.03526-23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Coste AT, Bachmann D, Sanglard D, Lamoth F. Deciphering the Mrr1/Mdr1 pathway in Azole resistance of Candida auris. Antimicrob Agents Chemother. 2022;66:4:e00067–22. https://doi.org/10.1128/aac.00067-22

Article  CAS  Google Scholar 

Escandón P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. 2019;68(1):15–21. https://doi.org/10.1093/cid/ciy411

Article  CAS  PubMed  Google Scholar 

Ceballos-Garzon A, Peñuela A, Valderrama-Beltrán S, Vargas-Casanova Y, Ariza B, Parra-Giraldo CM. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front Cell Infect Microbiol. 2023;13. https://doi.org/10.3389/fcimb.2023.1136217

Rojas AE, Cárdenas LY, García MC, Pérez JE. Expression of ERG11, ERG3, MDR1 and CDR1 genes in Candida tropicalis. Biomédica. 2023;43(Sp. 1):144–55 https://doi.org/10.7705/biomedica.6852

Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol. 2024;14. https://doi.org/10.3389/fcimb.2024.1339501

Ivanov M, Ćirić A, Stojković D. Emerging antifungal targets and strategies. Int J Mol Sci. 2022;23:52756. https://doi.org/10.3390/ijms23052756

Article  CAS  Google Scholar 

Rojas AE, Pérez JE, Hernández JS, Zapata Y. Análisis cuantitativo de la expresión de genes de resistencia a fluconazol en cepas de Candida albicans aisladas al ingreso de adultos mayores a una unidad de cuidados intensivos de Manizales, Colombia. Biomédica. 2020; 40:1:153–65 https://doi.org/10.7705/biomedica.4723

El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Analysis of CDR1 and MDR1 gene expression and ERG11 substitutions in clinical Candida tropicalis isolates from alexandria, Egypt. Braz J Microbiol. 2023;54:4:2609–15. https://doi.org/10.1007/s42770-023-01106-y

Comments (0)

No login
gif