Thaddäus T, Wolfgang R, Annika H, et al. Quantifying the underestimation of projected global diabetes prevalence by the international diabetes federation (IDF) diabetes atlas. BMJ Open Diabetes Res Care. 2021. https://doi.org/10.1136/bmjdrc-2021-002122
Deng W, Zhao L, Chen C, et al. National burden and risk factors of diabetes mellitus in China from 1990 to 2021: results from the global burden of disease study 2021. J Diabetes. 2024;16(10):e70012. https://doi.org/10.1111/1753-0407.70012
Article PubMed PubMed Central Google Scholar
Shah RB, Patel M, Maahs DM, et al. Insulin delivery methods: past, present and future. Int J Pharm Investig. 2016;6(1):1–9. https://doi.org/10.4103/2230-973x.176456
Article CAS PubMed PubMed Central Google Scholar
Eldor R, Neutel J, Homer K, et al. Efficacy and safety of 28-day treatment with oral insulin (ORMD-0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes Obes Metabolism. 2021;23(11):2529–38. https://doi.org/10.1111/dom.14499
Lu P, Ruan D, Huang M et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther, 2024;9(1):166. https://doi.org/10.1038/s41392-024-01852-x.
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3(1). https://doi.org/10.3390/gels3010006
Mansoor S, Kondiah PPD, Choonara YE. Advanced Hydrogels for the Controlled Delivery of Insulin.Pharmaceutics, 2021;13(12). https://doi.org/10.3390/pharmaceutics13122113.
Kumi M, Ejeromedoghene O, Sudane WD et al. nlocking the biological response of smart Stimuli-Responsive hydrogels and their application in biological systems. European polymer journal, 2024;209. https://doi.org/10.1016/j.eurpolymj.2024.112906.
Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater. 2016;1:101038natrevmats201512.
Ahn J, Ryu J, Song G, et al. Network structure and enzymatic degradation of Chitosan hydrogels determined by crosslinking methods. Carbohydr Polym. 2019;217:p160–167. https://doi.org/10.1016/j.carbpol.2019.04.055
Rodriguez-Rivera GJ, Green M, Shah V, et al. A user’s guide to degradation testing of polyethylene glycol-based hydrogels: from in vitro to in vivo studies. J Biomed Mater Res A. 2024;112(8):1200–12. https://doi.org/10.1002/jbm.a.37609
Article CAS PubMed Google Scholar
Elsherif M, Hassan MU, Yetisen AK, et al. Hydrogel optical fibers for continuous glucose monitoring. Biosens Bioelectron. 2019;137:25–32. https://doi.org/10.1016/j.bios.2019.05.002
Article CAS PubMed Google Scholar
Liu L, Liu H, Wang R et al. Preparation and application of environmentally-responsive hydrogels in tissue engineering. Materials Today Communications, 2024;40. https://doi.org/10.1016/j.mtcomm.2024.109493.
Huan ZK, Li JB, Guo JH, et al. Pancreatic islet cells in microfluidic-spun hydrogel microfibers for the treatment of diabetes. Acta Biomater. 2024;187:149–60. https://doi.org/10.1016/j.actbio.2024.08.047
Article CAS PubMed Google Scholar
Daly AC, Riley L, Segura T, et al. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20–43. https://doi.org/10.1038/s41578-019-0148-6
Article CAS PubMed Google Scholar
Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym. 2019;203:423–9. https://doi.org/10.1016/j.carbpol.2018.09.083
Article CAS PubMed Google Scholar
Yin Q, Luo XY, Ma K et al. Hyaluronic Acid/Gelatin-Based Multifunctional Bioadhesive Hydrogel Loaded with a Broad-Spectrum Bacteriocin for Enhancing Diabetic Wound Healing. ACS Appl Mater Interfaces, 2024;16(36):47226-47241. https://doi.org/10.1021/acsami.4c09309.
Hameed H, Faheem S, Paiva-Santos AC, et al. A comprehensive review of Hydrogel-Based drug delivery systems: classification, properties, recent trends, and applications. AAPS PharmSciTech. 2024;25(4):64. https://doi.org/10.1208/s12249-024-02786-x
Clegg JR, Adebowale K, Zhao Z, et al. Hydrogels in the clinic: an update. Bioeng Transl Med. 2024;9(6):e10680. https://doi.org/10.1002/btm2.10680
Article PubMed PubMed Central Google Scholar
Bordbar-Khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. Int J Mol Sci, 2022;23(7). https://doi.org/10.3390/ijms23073665.
Buwalda SJ, Boere KW, Dijkstra PJ et al. Hydrogels in a historical perspective: from simple networks to smart materials.J Control Release, 2014;190:254-273. https://doi.org/10.1016/j.jconrel.2014.03.052.
Xie J, Li A, Li J. Advances in pH-Sensitive polymers for smart insulin delivery. Macromol Rapid Commun. 2017;38(23). https://doi.org/10.1002/marc.201700413
Shoukat H, Buksh K, Noreen S, et al. Hydrogels as potential drug-delivery systems: network design and applications. Therapeutic Delivery. 2021;12(5):375–96. https://doi.org/10.4155/tde-2020-0114
Article CAS PubMed Google Scholar
Shang H, Yang X, Liu H. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Carbohydr Polym. 2023;313:p120875. https://doi.org/10.1016/j.carbpol.2023.120875
Arrizabalaga JH, Smallcomb M, Abu-Laban M, et al. Ultrasound-Responsive hydrogels for On-Demand protein release. ACS Appl Bio Mater. 2022;5(7):3212–8. https://doi.org/10.1021/acsabm.2c00192
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Zhai Z, Yao Y, et al. Oxidized hydroxypropyl cellulose/carboxymethyl Chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydr Polym. 2023;300:p120213. https://doi.org/10.1016/j.carbpol.2022.120213
Di J, Yu J, Wang Q et al. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano research, 2017;10(4):1393-1402. https://doi.org/10.1007/s12274-017-1500-z.
Zhang W, Zha K, Xiong Y, et al. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact Mater. 2023;30:29–45. https://doi.org/10.1016/j.bioactmat.2023.07.006
Article CAS PubMed PubMed Central Google Scholar
Tse S, Bui B, Haupt K. Molecularly Imprinted Polymer Hydrogel Nanoparticles: Synthetic Antibodies for Cancer Diagnosis and Therapy. Chembiochem, 2022;23(8):e202100598. https://doi.org/10.1002/cbic.202100598.
Zolghadr L, Farahani BV, Ghasemzadeh H, et al. Physicochemical studies of closed loop insulin delivery system based on intelligent carboxymethyl cellulose hydrogel. Indian journal of biochemistry & biophysics; 2019;56(2)125–31.
Banach L, Williams GT, Fossey JS. Insulin delivery using dynamic covalent boronic Acid/Ester-Controlled release. Adv Ther. 2021;4(11). https://doi.org/10.1002/adtp.202100118
Jing Y, Zhang Y, Cheng W et al. Preparation, characterization and drug release properties of pH sensitive Zingiber officinale polysaccharide hydrogel beads. Int J Biol Macromol, 2024;263(Pt 1): 130376. https://doi.org/10.1016/j.ijbiomac.2024.130376.
Cao J, Yuan P, Wu B et al. dvances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels, 2023;9(8). https://doi.org/10.3390/gels9080662.
Pourjavadi A, Heydarpour R, Tehrani ZM. Multi-stimuli-responsive hydrogels and their medical applications. New J Chem. 2021;45(35):15705–17. https://doi.org/10.1039/d1nj02260a
Ying R, Wang W, Chen R, et al. Intestinal-Target and Glucose-Responsive smart hydrogel toward oral delivery system of drug with improved insulin utilization. Biomacromolecules. 2024. https://doi.org/10.1021/acs.biomac.4c01093
Lim HP, Ooi CW, Tey BT, et al. Controlled delivery of oral insulin Aspart using pH-responsive alginate/κ-carrageenan composite hydrogel beads. React Funct Polym. 2017;120:20–9. https://doi.org/10.1016/j.reactfunctpolym.2017.08.015
Peng Q, Sun X, Gong T, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater. 2013;9(2):5063–9. https://doi.org/10.1016/j.actbio.2012.09.034
Article CAS PubMed Google Scholar
Li X, Fu M, Wu J, et al., et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294–303. https://doi.org/10.1016/j.actbio.2017.01.016
Article CAS PubMed Google Scholar
Bercea M, Lupu A. Recent insights into Glucose-Responsive Concanavalin A-Based smart hydrogels for controlled insulin delivery. Gels. 2024;10(4):103390gels10040260.
Lin K, Yi J, Mao X et al. Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. Reactive & functional polymers, 2019;139112-119.1 0.1016/j.reactfunctpolym.
Xian SJ, Xiang YH, Deichmann S, et al. Enhanced glucose-responsivity of PBA-diol hydrogel networks by reducing crosslink affinity. Mol Syst Des Eng. 2024. https://doi.org/10.1039/d4me00106k
Mallawarachchi S, Mahadevan A, Gejji V et al. Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. DRug delivery and translational research, 2019;9(4):783-794. https://doi.org/10.1007/s13346-019-00620-7.
Shao JS, Feng LZ, Zhao QY et al. Erythrocyte-mimicking subcutaneous platform with a laser-controlled treatment against diabetes.Journal of Controlled Release, 2022;341:261-271. https://doi.org/10.1016/j.jconrel.2021.11.021.
Roth-Konforti ME, Comune M, Halperin-Sternfeld M et al. UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromolecular rapid communications, 2018;39(24). https://doi.org/10.1002/marc.201800588.
Chen Y, Song H, Huang K et al. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase. Food Funct, 2021;12(19):9165-9177. https://doi.org/10.1039/d1fo01411k.
Comments (0)