Abeuova L, Kali B, Tussipkan D, Akhmetollayeva A, Ramankulov Y, Manabayeva S (2023) CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato. Transgenic Res 32(5):383–397. https://doi.org/10.1007/s11248-023-00356-8
Article CAS PubMed Google Scholar
Abulaiti A, Maimaiti A, Yiming N, Fu Q, Li S, Li Y, Wang Y, Zhou Q (2023) Molecular subtypes based on PANoptosis-related genes and tumor microenvironment infiltration characteristics in lower-grade glioma. Funct Integr Genomics 17(2):84. https://doi.org/10.1007/s10142-023-01003-5
Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L (2021) Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transpl 36(11):1986–1993. https://doi.org/10.1093/ndt/gfaa129
Boman IA, Vage DI (2009) An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spaelsau (Ovis aries). BMC Res Notes 2:98. https://doi.org/10.1186/1756-0500-2-98
Article CAS PubMed PubMed Central Google Scholar
Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, Vage DI (2009) A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian white sheep (Ovis aries). Anim Genet 40(4):418–422. https://doi.org/10.1111/j.1365-2052.2009.01855.x
Article CAS PubMed Google Scholar
Boman IA, Klemetsdal G, Nafstad O, Blichfeldt T, Vage DI (2011) Selection based on progeny testing induces rapid changes in myostatin allele frequencies - a case study in sheep. J Anim Breed Genet 128(1):52–55. https://doi.org/10.1111/j.1439-0388.2010.00879.x
Article CAS PubMed Google Scholar
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate MicroRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818. https://doi.org/10.1038/ng1810
Article CAS PubMed Google Scholar
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using crispr/cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143
Article CAS PubMed PubMed Central Google Scholar
Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A (2015) Efficient generation of myostatin Knock-Out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 10(8):e0136690. https://doi.org/10.1371/journal.pone.0136690
Article CAS PubMed PubMed Central Google Scholar
Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC, Perisse IV, Van Wettere A, Lee YM, Polejaeva IA (2022) Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 13:986316. https://doi.org/10.3389/fgene.2022.986316
Article CAS PubMed PubMed Central Google Scholar
Ding Q, Cui Z, Shi Q, Zhang Y, He N, Guo R, Tian Y, Cao S, Zhong J, Wang H (2025) An advanced cytosine base editor enabled the generation of cattle with a stop codon in the β-lactoglobulin gene. Transgenic Res 14(1). https://doi.org/10.1007/s11248-025-00435-y
Du Y, Liu Y, Hu J, Peng X, Liu Z (2023) CRISPR/Cas9 systems: delivery technologies and biomedical applications. Asian J Pharm Sci 18(6):100854. https://doi.org/10.1016/j.ajps.2023.100854
Article CAS PubMed PubMed Central Google Scholar
Dyke E, Bijnagte-Schoenmaker C, Wu KM, Oudakker A, Roepman R, Nadif Kasri N (2023) Generation of induced pluripotent stem cell line carrying frameshift variants in NPHP1 (UCSFi001-A-68) using CRISPR/Cas9. Stem Cell Res 68:103053. https://doi.org/10.1016/j.scr.2023.103053
Article CAS PubMed Google Scholar
Elsharawy H, Refat M (2023) CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 23(3):265. https://doi.org/10.1007/s10142-023-01190-1
Article CAS PubMed Google Scholar
Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 3(19). https://doi.org/10.1172/jci.insight.123529
Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, Bao S, Mu Y, Sonstegard T, Li K (2022) Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65(2):362–375. https://doi.org/10.1007/s11427-020-1927-9
Article CAS PubMed Google Scholar
Freking BA, Leymaster KA (2006) Evaluation of the ovine Callipyge locus: IV. Genotypic effects on reproductive traits. J Anim Sci 84(2):311–316. https://doi.org/10.2527/2006.842311x
Article CAS PubMed Google Scholar
Gao F, Kishida T, Ejima A, Gojo S, Mazda O (2013) Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells. Biochem Biophys Res Commun 431(2):309–314. https://doi.org/10.1016/j.bbrc.2012.12.105
Article CAS PubMed Google Scholar
Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P (2009) Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle. Anim Genet 40(1):97–100. https://doi.org/10.1111/j.1365-2052.2008.01790.x
Article CAS PubMed Google Scholar
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. https://doi.org/10.1038/ng0997-71
Article CAS PubMed Google Scholar
Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M (1998) Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 9(3):210–213. https://doi.org/10.1007/s003359900727
Article CAS PubMed Google Scholar
Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, Jia R, Zhou W, Wang Z, Deng K, Huang M, Wang F, Zhang Y (2016) Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep 6:29855. https://doi.org/10.1038/srep29855
Article CAS PubMed PubMed Central Google Scholar
Guo R, Wang H, Meng C, Gui H, Li Y, Chen F, Zhang C, Zhang H, Ding Q, Zhang J, Zhang J, Qian Y, Zhong J, Cao S (2023) Efficient and specific generation of MSTN-Edited Hu sheep using C-CRISPR. Genes (Basel) 14(6). https://doi.org/10.3390/genes14061216
Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D (2018) Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-Mediated genome editing. Int J Biol Sci 14(4):427–436. https://doi.org/10.7150/ijbs.23890
Article CAS PubMed PubMed Central Google Scholar
He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, Cheng Y (2018) Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep 38(6). https://doi.org/10.1042/BSR20180742
Hoxhaj G, Manning BD (2020) The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20(2):74–88. https://doi.org/10.1038/s41568-019-0216-7
Article CAS PubMed Google Scholar
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
Article CAS PubMed PubMed Central Google Scholar
Huszar K, Welker Z, Gyorgypal Z, Toth E, Ligeti Z, Kulcsar PI, Dancso J, Talas A, Krausz SL, Varga E, Welker E (2023) Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs. Nucleic Acids Res 51(11):5847–5863. https://doi.org/10.1093/nar/gkad323
Article CAS PubMed PubMed Central Google Scholar
Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, Skarnes WC (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12(6):479. https://doi.org/10.1038/nmeth.3408
Comments (0)