A machine learning model for predicting the probability of hypothermia in trauma patients: a multi-center retrospective cohort study

Weuster M, Brück A, Lippross S, et al. Epidemiology of accidental hypothermia in polytrauma patients: an analysis of 15,230 patients of the TraumaRegister DGU. J Trauma Acute Care Surg. 2016;81(5):905–12.

Google Scholar 

Mikhail J. The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Adv Crit Care. 1999;10(1):85–94.

Google Scholar 

Rösli D, Schnüriger B, Candinas D, et al. The impact of accidental hypothermia on mortality in trauma patients overall and patients with traumatic brain injury specifically: a systematic review and meta-analysis. World J Surg. 2020;44:4106–17.

Google Scholar 

Reynolds BR, Forsythe RM, Harbrecht BG, et al. Hypothermia in massive transfusion: have we been paying enough attention to it? J Trauma Acute Care Surg. 2012;73(2):486–91.

Google Scholar 

Beilman GJ, Blondet JJ, Nelson TR, et al. Early hypothermia in severely injured trauma patients is a significant risk factor for multiple organ dysfunction syndrome but not mortality. Ann Surg. 2009;249(5):845–50.

Google Scholar 

Rubiano AM, Sanchez AI, Estebanez G, et al. The effect of admission spontaneous hypothermia on patients with severe traumatic brain injury. Injury. 2013;44(9):1219–25.

Google Scholar 

Bukur M, Hadjibashi AA, Ley EJ, et al. Impact of prehospital hypothermia on transfusion requirements and outcomes. J Trauma Acute Care Surg. 2012;73(5):1195–201.

Google Scholar 

Ireland S, Endacott R, Cameron P, et al. The incidence and significance of accidental hypothermia in major trauma—a prospective observational study. Resuscitation. 2011;82(3):300–6.

Google Scholar 

Martin RS, Kilgo PD, Miller PR, et al. Injury-associated hypothermia: an analysis of the 2004 national trauma data bank. Shock. 2005;24(2):114–8.

Google Scholar 

Wang HE, Callaway CW, Peitzman AB, et al. Admission hypothermia and outcome after major trauma. Crit Care Med. 2005;33(6):1296–301.

Google Scholar 

Zhang J, Wood J, Bergeron AL, et al. Effects of low temperature on shear-induced platelet aggregation and activation. J Trauma Acute Care Surg. 2004;57(2):216–23.

Google Scholar 

Aritomi S, Harada E, Sugino K, et al. Comparison of the cardioprotective and renoprotective effects of the L/N-type calcium channel blocker, cilnidipine, in adriamycin-treated spontaneously-hypertensive rats. Clin Exp Pharmacol Physiol. 2015;42(4):344–52.

Google Scholar 

Danzl DF, Pozos RS. Accidental hypothermia. N Engl J Med. 1994;331(26):1756–60.

Google Scholar 

Rajagopalan S, Mascha E, Na J, et al. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. J Am Soc Anesthesiol. 2008;108(1):71–7.

Google Scholar 

Deslarzes T, Rousson V, Yersin B, et al. An evaluation of the Swiss staging model for hypothermia using case reports from the literature. Scand J Trauma Resusc Emerg Med. 2016;24:1–7.

Google Scholar 

Lundgren P, Henriksson O, Kuklane K, et al. Validity and reliability of the Cold Discomfort Scale: a subjective judgement scale for the assessment of patient thermal state in a cold environment. J Clin Monit Comput. 2014;28:287–91.

Google Scholar 

Pasquier M, Hugli O, Paal P, et al. Hypothermia outcome prediction after extracorporeal life support for hypothermic cardiac arrest patients: the HOPE score. Resuscitation. 2018;126:58–64.

Google Scholar 

Okada Y, Matsuyama T, Morita S, et al. The development and validation of a “5A” severity scale for predicting in-hospital mortality after accidental hypothermia from J-point registry data. J Intensive Care. 2019;7:1–9.

Google Scholar 

Uemura T, Kimura A, Matsuda W, et al. Derivation of a model to predict mortality in urban patients with accidental hypothermia: a retrospective observational study. Acute Med Surg. 2020;7(1):e478.

Google Scholar 

Zhang G, Xu JM, Wang H, et al. An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter. Biomed Signal Process Control. 2022;77:103779.

Google Scholar 

Mukherjee J, Sharma R, Dutta P, et al. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev. 2023;40(3):1659–708.

Google Scholar 

Singh P, Nagori A, Lodha R, et al. Early prediction of hypothermia in pediatric intensive care units using machine learning. Front Physiol. 2022;13:921884.

Google Scholar 

Yang JP, Xie H, Zhou YF, Yuan H. Construction of risk prediction model for hypothermia during pancreaticoduodenectomy. Heliyon. 2024;10(12):e32490.

Google Scholar 

Lundberg S. A unified approach to interpreting model predictions. arxiv preprint arxiv:1705.07874, 2017.

Sundararajan M, Najmi A. The many Shapley values for model explanation[C]//International conference on machine learning. PMLR, 2020: 9269–9278.

Lundberg SM, Erion GG, Lee SI. Consistent individualized feature attribution for tree ensembles. arxiv preprint, arxiv:1802.03888--26 2018.

Janzing D, Minorics L, Blöbaum P. Feature relevance quantification in explainable AI: A causal problem[C]//International Conference on artificial intelligence and statistics. PMLR, 2020: 2907–2916.

Slack D, Hilgard S, Jia E, et al. Fooling lime and shap: Adversarial attacks on post hoc explanation methods[C]//Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. 2020: 180–186.

Sosnowski P, Mikrut K, Krauss H. Hypothermia–mechanism of action and pathophysiological changes in the human body. Adv Hygiene Experim Med. 2015;69:69–79.

Google Scholar 

Simegn GD, Bayable SD, Fetene MB. Prevention and management of perioperative hypothermia in adult elective surgical patients: a systematic review. Ann Med Surg (Lond). 2021;14(72):103059. https://doi.org/10.1016/j.amsu.2021.103059.

Article  Google Scholar 

Dai Z, Zhang Y, Yi J, Huang Y. Validation of a prediction model for intraoperative hypothermia in patients receiving general anesthesia. Int J Clin Pract. 2022;17(2022):6806225. https://doi.org/10.1155/2022/6806225.

Article  Google Scholar 

Fullerton Josie L, et al. Pediatric traumatic brain injury and microvascular blood-brain barrier pathology. JAMA Netw Open. 2024;7(11):e2446767.

Google Scholar 

Shen Q, Wu W, Wang R, Zhang J, Liu L. A non-invasive predictive model based on multimodality ultrasonography images to differentiate malignant from benign focal liver lesions. Sci Rep. 2024;14(1):23996. https://doi.org/10.1038/s41598-024-74740-7.PMID:39402127;PMCID:PMC11473797.

Article  Google Scholar 

Tsvetanova A, Sperrin M, Peek N, et al. Missing data was handled inconsistently in UK prediction models: a review of method used. J Clin Epidemiol. 2021;140:149–58.

Google Scholar 

Mei Z, Grummer-Strawn LM. Standard deviation of anthropometric Z-scores as a data quality assessment tool using the 2006 WHO growth standards: a cross country analysis. Bull World Health Organ. 2007;85:441–8.

Google Scholar 

Dodek PM, Wiggs BR. Logistic regression model to predict outcome after in-hospital cardiac arrest: validation, accuracy, sensitivity and specificity. Resuscitation. 1998;36(3):201–8.

Google Scholar 

Wang R. AdaBoost for feature selection, classification and its relation with SVM, a review. Phys Procedia. 2012;25:800–7.

Google Scholar 

Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58.

Google Scholar 

Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016; pp 785–794.

Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 2017, 30.

Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

MathSciNet  Google Scholar 

Jiao Y, Du P. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantit Biol. 2016;4:320–30.

Google Scholar 

Jiang H, Iftimia NV, Xu Y, Eggert JA, Fajardo LL, Klove KL. Near-infrared optical imaging of the breast with model-based reconstruction. Acad Radiol. 2002;9(2):186–94.

Google Scholar 

Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, Kann B, Aerts HJWL, Mak RH. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol. 2020;17(12):771–81.

Google Scholar 

Mosquera JM, Shubin H, Weil MH. Abnormal temperature control after intoxication with short-acting barbiturates. Crit Care Med. 1981;9(9):662–5.

Google Scholar 

Chakkarapani E, Dingley J, Aquilina K, et al. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic—ischemic pig model. J Cereb Blood Flow Metab. 2013;33(11):1752–60.

Google Scholar 

Zhao Z, Cao J, Niu C, et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat Metab. 2022;4(3):320–6.

Google Scholar 

Comments (0)

No login
gif