Lung nodule synthesis guided by customized multi-confidence masks

Wang S, Zhou M, Liu Z. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal. 2017;40:172–83.

Google Scholar 

Yang H, Wang Q, Zhang Y. Lung nodule segmentation and uncertain region prediction with an uncertainty-aware attention mechanism. IEEE Trans Med Imaging. 2023;43(4):1284–95.

Google Scholar 

Roy R, Mazumdar S, Chowdhury AS. ADGAN: attribute-driven generative adversarial network for synthesis and multiclass classification of pulmonary nodules. IEEE Trans Neural Netw Learn Syst. 2022;35(2):2484–95.

Google Scholar 

Ian G, Jean P-A, Mehdi M. Generative adversarial nets. Advances in neural information processing systems. 2014;27.

Phillip I, Yan ZJ, Tinghui Z. Image-to-image translation with conditional adversarial networks. IEEE; 2016.

Wang Q, Zhang X, Zhang W. Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism. IEEE Trans Med Imaging. 2021;40(9):2343–53.

Google Scholar 

Jonathan H, Ajay J, Pieter A. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.

Google Scholar 

Liu J, Wang Q, Fan H. Residual denoising diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2773–2783; 2024.

Wang C, Xu R, Xu S, et al. Accurate lung nodules segmentation with detailed representation transfer and soft mask supervision. IEEE transactions on neural networks and learning systems; 2020.

ArmatoIII SG, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915–31.

Google Scholar 

Martin H, Hubert R, Thomas U. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems; 2017.

Vadim S, Edgar S, Dan Z, et al. Oasis: only adversarial supervision for semantic image synthesis. Int J Comput Vis. 2022;130(12):2903–23.

Google Scholar 

Tan Z, Chu Q, Chai M, et al. Semantic probability distribution modeling for diverse semantic image synthesis. IEEE Trans Pattern Anal Mach Intell. 2023;45(5):6247–64. https://doi.org/10.1109/TPAMI.2022.3210085.

Article  Google Scholar 

Pedro C, Adrian G, Ines MM, et al. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging. 2018;37(99):781–91.

Google Scholar 

Nie D, Trullo R, Lian J, et al. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.

Google Scholar 

Han C, Kitamura Y, Kudo A, et al. Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. IEEE; 2019.

Wang Z, Zhang Z, Hendriks L, et al. 106p generation of synthetic ground glass opacities (GGOS) using generative adversarial networks (GANS). Ann Oncol. 2022;33:S80.

Google Scholar 

Jose M, Tania P, Francisco S, et al. Lung CT image synthesis using GANs. Expert Syst Appl. 2023;215:119350.

Google Scholar 

Xu Y, Liang J, Zhuo Y, Liu L, Xiao Y, Zhou L. TDASD: generating medically significant fine-grained lung adenocarcinoma nodule CT images based on stable diffusion models with limited sample size. Comput Methods Programs Biomed. 2024;248(000):14.

Google Scholar 

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18; 2015. Springer. pp. 234–241

Xie Y, Zhang J, Xia Y, Fulham M, Zhang Y. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inf Fusion. 2018;42:102–10.

Google Scholar 

Liu X, Wang L. Multi-granularity sequence generation for hierarchical image classification. Comput Vis Media. 2024;10(2):243–60.

Google Scholar 

Ilya L, Frank H. Sgdr: stochastic gradient descent with warm restarts; 2016.

Zhou W, Yuan L, Mu T. Multi3d: 3d-aware multimodal image synthesis. Comput Vis Media. 2024;10(6):1205–17.

Google Scholar 

Toda R, Teramoto A, Kondo M, Imaizumi K, Saito K, Fujita H. Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Sci Rep. 2022;12(1):12867.

Google Scholar 

Ozan O, Jo S, Le FL, et al. Attention u-net: learning where to look for the pancreas; 2018.

Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation. IEEE; 2016.

Zhang T, Lin J, Jiao J, Zhang H, Li H. An interpretable latent denoising diffusion probabilistic model for fault diagnosis under limited data. IEEE Trans Ind Inform. 2024;20(8):10354–65. https://doi.org/10.1109/TII.2024.3393002.

Article  Google Scholar 

Zheng J, Liu D, Wang C, Hu M, Yang Z, Ding C, Tao D. MMOT: mixture-of-modality-tokens transformer for composed multimodal conditional image synthesis. Int J Comput Vis. 2024;132(9):3537–65.

Google Scholar 

Jehanzaib M, Almalioglu Y, Ozyoruk KB, et al. A robust image segmentation and synthesis pipeline for histopathology. Med Image Anal. 2024;99:103344. https://doi.org/10.1016/j.media.2024.103344.

Article  Google Scholar 

Sun Q, Li P, Zhang J, Yip R, Zhu Y, Yankelevitz DF, Henschke CI. CT predictors of visceral pleural invasion in patients with non-small cell lung cancers 30 mm or smaller. Radiology. 2024;310(1):e231611.

Google Scholar 

Comments (0)

No login
gif