Survey on sampling conditioned brain images and imaging measures with generative models

Kingma DP. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 2013.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst 2014;27

Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.

Google Scholar 

Ehrhardt J, Wilms M. Autoencoders and variational autoencoders in medical image analysis. In: Biomedical Image Synthesis and Simulation, 2022;pp. 129–162. Academic Press, Cambrdige.

Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.

Google Scholar 

Kazerouni A, Aghdam EK, Heidari M, Azad R, Fayyaz M, Hacihaliloglu I, Merhof D. Diffusion models in medical imaging: a comprehensive survey. Med Image Anal. 2023;88:102846.

Google Scholar 

Xin B, Hu Y, Zheng Y, Liao H. Multi-modality generative adversarial networks with tumor consistency loss for brain mr image synthesis. In: International Symposium on Biomedical Imaging, 2020;pp. 1803–1807. IEEE

Zhang Y, Liu G, Bao R, Zhan L, Thompson P, Huang H. Brain image synthesis using incomplete multimodal data. In: International Symposium on Biomedical Imaging, 2024;pp. 1–5. IEEE

Salmi M, Atif D, Oliva D, Abraham A, Ventura S. Handling imbalanced medical datasets: review of a decade of research. Artif Intell Rev. 2024;57(10):273.

Google Scholar 

Uzunova H, Ehrhardt J, Handels H. Generation of annotated brain tumor mris with tumor-induced tissue deformations for training and assessment of neural networks. In: Medical Image Computing and Computer Assisted Intervention, 2020;pp. 501–511. Springer

Wegmayr V, Hörold M, Buhmann JM. Generative aging of brain mri for early prediction of mci-ad conversion. In: International Symposium on Biomedical Imaging, 2019;pp. 1042–1046. IEEE

Giuffrè M, Shung DL. Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. NPJ Digit Med. 2023;6(1):186.

Google Scholar 

Fu Y, Dong S, Liao Y, Xue L, Xu Y, Li F, Yang Q, Yu T, Tian M, Zhuo C. A resource-efficient deep learning framework for low-dose brain pet image reconstruction and analysis. In: International Symposium on Biomedical Imaging, 2022;pp. 1–5. IEEE

Song Z, Wang X, Zhao X, Wang S, Shen Z, Zhuang Z, Liu M, Wang Q, Zhang L. Alias-free co-modulated network for cross-modality synthesis and super-resolution of mr images. In: Medical Image Computing and Computer-Assisted Intervention, 2023;pp. 66–76. Springer

An L, Chen J, Chen P, Zhang C, He T, Chen C, Zhou JH, Yeo BT, Aging LS, Initiative ADN, et al. Goal-specific brain mri harmonization. Neuroimage. 2022;263:119570.

Google Scholar 

Liu M, Maiti P, Thomopoulos S, Zhu A, Chai Y, Kim H, Jahanshad N. Style transfer using generative adversarial networks for multi-site mri harmonization. In: Medical Image Computing and Computer Assisted Intervention, 2021;pp. 313–322. Springer

Xiao Z, Kreis K, Vahdat A. Tackling the generative learning trilemma with denoising diffusion gans. arXiv preprint arXiv:2112.07804 2021.

Zhao S, Ren H, Yuan A, Song J, Goodman N, Ermon S. Bias and generalization in deep generative models: An empirical study. Adv Neural Inf Process Syst 2018;31

Sohl-Dickstein J, Weiss E, Maheswaranathan N, Ganguli S. Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, 2015;pp. 2256–2265. PMLR

Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. Adv Neural Inf Process Syst 2019;32

Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456 2020.

Mirza M. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014.

Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: International Conference on Computer Vision, 2017;pp. 1501–1510

Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Conference on Computer Vision and Pattern Recognition, 2022;pp. 10684–10695

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):1001779.

Google Scholar 

Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell LJ, Ward C, et al. The alzheimer’s disease neuroimaging initiative (adni): Mri methods. J Magn Reson Imaging. 2008;27(4):685–91.

Google Scholar 

Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The australian imaging, biomarkers and lifestyle (aibl) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease. Int Psychogeriatr. 2009;21(4):672–87.

Google Scholar 

Fowler C, Rainey-Smith SR, Bird S, Bomke J, Bourgeat P, Brown BM, Burnham SC, Bush AI, Chadunow C, Collins S, et al. Fifteen years of the australian imaging, biomarkers and lifestyle (aibl) study: progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to alzheimer’s disease. J Alzheimer’s Disease Reports. 2021;5(1):443–68.

Google Scholar 

Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci. 2007;19(9):1498–507.

Google Scholar 

Koenig LN, Day GS, Salter A, Keefe S, Marple LM, Long J, LaMontagne P, Massoumzadeh P, Snider BJ, Kanthamneni M, et al. Select atrophied regions in alzheimer disease (sara): An improved volumetric model for identifying alzheimer disease dementia. NeuroImage: Clinical. 2020;26:102248.

Google Scholar 

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium W-MH, et al. The wu-minn human connectome project: an overview. NeuroImage 80, 2013;62–79

Biomedical Image Analysis Group, I.C.L.: IXI Dataset 2015. https://brain-development.org/ixi-dataset/

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging. 2014;34(10):1993–2024.

Google Scholar 

Verdier MC, Saluja R, Gagnon L, LaBella D, Baid U, Tahon NH, Foltyn-Dumitru M, Zhang J, Alafif M, Baig S, et al. The 2024 brain tumor segmentation (brats) challenge: glioma segmentation on post-treatment mri. arXiv preprint arXiv:2405.18368 2024.

Kingma DP, Mohamed S, Jimenez Rezende D, Welling M. Semi-supervised learning with deep generative models. Adv Neural Inf Process Syst 2014;27

Sohn K, Lee H, Yan X. Learning structured output representation using deep conditional generative models. Adv Neural Inf Process Syst. 2015;28

Lawry Aguila A, Chapman J, Janahi M, Altmann A. Conditional vaes for confound removal and normative modelling of neurodegenerative diseases. In: Medical Image Computing and Computer Assisted Intervention, 2022;pp. 430–440. Springer

Sidulova M, Park CH. Conditional variational autoencoder for functional connectivity analysis of autism spectrum disorder functional magnetic resonance imaging data: a comparative study. Bioengineering. 2023;10(10):1209.

Google Scholar 

Wang X, Zhou R, Zhao K, Leow A, Zhang Y, He L. Normative modeling via conditional variational autoencoder and adversarial learning to identify brain dysfunction in alzheimer’s disease. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023;pp. 1–4. IEEE

Lu J, Yan T, Yang L, Zhang X, Li J, Li D, Xiang J, Wang B. Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability. Neuroimage. 2024;295:120651.

Google Scholar 

Hilal S, Chai YL, Ikram MK, Elangovan S, Yeow TB, Xin X, Chong JY, Venketasubramanian N, Richards AM, Chong JP, et al. Markers of cardiac dysfunction in cognitive impairment and dementia. Medicine. 2015;94(1):297.

Google Scholar 

Craddock C, Benhajali Y, Chu C, Chouinard F, Evans A, Jakab A, Khundrakpam BS, Lewis JD, Li Q, Milham M, et al. The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front Neuroinform. 2013;7(27):5.

Google Scholar 

Zhuang P, Schwing AG, Koyejo O. Fmri data augmentation via synthesis. In: International Symposium on Biomedical Imaging, 2019;pp. 1783–1787. IEEE

Jung E, Luna M, Park SH. Conditional gan with an attention-based generator and a 3d discriminator for 3d medical image generation. In: medical image computing and computer assisted intervention, 2021;pp. 318–328. Springer

Du Y, Quan Q, Han H, Zhou SK. Semi-supervised pseudo-healthy image synthesis via confidence augmentation. In: international symposium on biomedical imaging, 2022;pp. 1–4. IEEE

Tang K, Chen L, Wu Z, Zhao F, Wang Y, Lin W, Wang L, Li G. Generation of anatomy-realistic 4d infant brain atlases with tissue maps using generative adversarial networks. In: international symposium on biomedical imaging, 2024;pp. 1–5. IEEE

Jaouen V, Conze P-H, Visvikis D. One-sided unsupervised medical image synthesis with normalized edge consistency. In: International Symposium on Biomedical Imaging, 2024;pp. 1–5. IEEE

Ang SP, Phung SL, Field M, Schira MM. An improved deep learning framework for mr-to-ct image synthesis with a new hybrid objective function. In: international symposium on biomedical imaging, (2022);pp. 1–5. IEEE

Chen Z, Li C, Zheng K, Zhang Y, Wu Y, Feng Q, Zhong L, Yang W. Glfa-net: A hybrid network for mr-to-ct synthesis via global and local feature aggregation. In: international symposium on biomedical imaging, 2023;pp. 1–5. IEEE

Ren M, Kim H, Dey N, Gerig G. Q-space conditioned translation networks for directional synthesis of diffusion weighted images from multi-modal structural mri. In: medical image computing and computer assisted intervention, 2021;pp. 530–540. Springer

Liu X, Xing F, El Fakhri G, Woo J. A unified conditional disentanglement framework for multimodal brain mr image translation. In: international symposium on biomedical imaging, 2021;pp. 10–14. IEEE

Pinetz T, Kobler E, Haase R, Deike-Hofmann K, Radbruch A, Effland A. Faithful synthesis of low-dose contrast-enhanced brain mri scans using noise-preserving conditional gans. In: medical image computing and computer assisted intervention, 2023;pp. 607–617 Springer

Hu X, Shen R, Luo D, Tai Y, Wang C, Menze BH. Autogan-synthesizer: neural architecture search for cross-modality mri synthesis. In: medical image computing and computer assisted intervention, 2022;pp. 397–409. Springer

Tang Z, Zhang D, Song Y, Wang H, Liu D, Zhang C, Liu S, Peng H, Cai W. 3d conditional adversarial learning for synthesizing microscopic neuron image using skeleton-to-neuron translation. In: international symposium on biomedical imaging, 2020;pp. 1775–1779. IEEE

Yu Z, Zhai Y, Han X, Peng T, Zhang X-Y. Mousegan: Gan-based multiple mri modalities synthesis and segmentation for mouse brain structures. In: medical image computing and computer assisted intervention, 2021;pp. 442–450. Springer

Pan Y, Chen Y, Shen D, Xia Y. Collaborative image synthesis and disease diagnosis for classification of neurodegenerative disorders with incomplete multi-modal neuroimages. In: medical image computing and computer assisted intervention, 2021;pp. 480–489. Springer

Nguyen B, Feldman A, Bethapudi S, Jennings A, Willcocks CG. Unsupervised region-based anomaly detection in brain mri with adversarial image inpainting. In: International Symposium on Biomedical Imaging, 2021;pp. 1127–1131. IEEE

Pernet C, Gorgolewski K, Ian W. A neuroimaging dataset of brain tumour patients. UK Data Archive 2016.

Ferreira A, Luijten G, Puladi B, Kleesiek J, Alves V, Egger J. Generalisation of segmentation using generative adversarial networks. In: international symposium on biomedical imaging, 2024;pp. 1–4. IEEE

Hamghalam M, Wang T, Qin J, Lei B. Transforming intensity distribution of brain lesions via conditional gans for segmentation. In: international symposium on biomedical imaging, 2020;pp. 1–4. IEEE

Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, Sochat VV, Nichols TE, Poldrack RA, Poline J-B, et al. Neurovault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front Neuroinform. 2015;9:8.

Google Scholar 

Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW. Construction of a 3d probabilistic atlas of human cortical structures. Neuroimage. 2008;39(3):1064–80.

Google Scholar 

Howell BR, Styner MA, Gao W, Yap P-T, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel A, et al. The unc/umn baby connectome project (bcp): An overview of the study design and protocol development. Neuroimage. 2019;185:891–905.

Google Scholar 

Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, et al. Bigneuron: A resource to benchmark and predict best-performing algorithms for automated reconstruction of neuronal morphology. bioRxiv, 2022;2022–05

Puccio B, Pooley JP, Pellman JS, Taverna EC, Craddock RC. The preprocessed connectomes project repository of manually corrected skull-stripped t1-weighted anatomical mri data. GigaScience. 2016;5(1):13742–016.

Google Scholar 

Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, Kieburtz K, Flagg E, Chowdhury S, et al. The parkinson progression marker initiative (ppmi). Prog Neurobiol. 2011;95(4):629–35.

Google Scholar 

Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, et al. The adolescent brain cognitive development (abcd) study: imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54.

Google Scholar 

Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, et al. A probabilistic atlas and reference system for the human brain International consortium for brain: mapping (icbm). Philos Trans R Soc Lond B Biol Sci. 2001;356(1412):1293–322.

Google Scholar 

Batzolis G, Stanczuk J, Schönlieb C-B, Etmann C. Conditional image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606 2021.

Jeong J, Kim KD, Nam Y, Cho K, Kang J, Hong G-S, Kim N. Generating high-resolution 3d ct with 12-bit depth using a diffusion model with adjacent slice and intensity calibration network. In: medical image computing and computer-assisted intervention, 2023;pp. 366–375. Springer

Peng W, Adeli E, Bosschieter T, Park SH, Zhao Q, Pohl KM. Generating realistic brain mris via a conditional diffusion probabilistic model. In: medical image computing and computer assisted intervention, 2023;pp. 14–24. Springer

Han K, Xiong Y, You C, Khosravi P, Sun S, Yan X, Duncan JS, Xie X. Medgen3d: A deep generative framework for paired 3d image and mask generation. In: medical image computing and computer assisted intervention, 2023;pp. 759–769. Springer

Litrico M, Guarnera F, Giuffrida MV, Ravì D, Battiato S. Tadm: Temporally-aware diffusion model for neurodegenerative progression on brain mri. In: medical image computing and computer assisted intervention, 2024;pp. 444–453. Springer

Zhang J, Zhao Q, Adeli E, Pfefferbaum A, Sullivan EV, Paul R, Valcour V, Pohl KM. Multi-label, multi-domain learning identifies compounding effects of hiv and cognitive impairment. Med Image Anal. 2022;75:102246.

Google Scholar 

Tapp A, Parida A, Zhao C, Lam V, Lepore N, Anwar SM, Linguraru MG. Mr to ct synthesis using 3d latent diffusion. In: international symposium on biomedical imaging, 2024;pp. 1–5. IEEE

Dayarathna S, Islam KT, Chen Z. Ultra low-field to high-field mri translation using adversarial diffusion. In: international symposium on biomedical imaging, 2024;pp. 1–4. IEEE

Jiang L, Mao Y, Wang X, Chen X, Li C. Cola-diff: Conditional latent diffusion model for multi-modal mri synthesis. In: medical image computing and computer assisted intervention, 2023;pp. 398–408. Springer

Hu Y, Kothapalli SV, Gan W, Sukstanskii AL, Wu GF, Goyal M, Yablonskiy DA, Kamilov US. Diffgepci: 3d mri synthesis from mgre signals using 2.5 d diffusion model. In: international symposium on biomedical imaging, 2024;pp. 1–4. IEEE

Bae J, Tong E, Chen H. Conditional diffusion model for versatile temporal inpainting in 4d cerebral ct perfusion imaging. In: medical image computing and computer assisted intervention, 2024;pp. 67–77. Springer

Cho H, Wei Z, Lee S, Dan T, Wu G, Kim WH. Conditional diffusion with ordinal regression: Longitudinal data generation for neurodegenerative disease studies. In: international conference on learning representations 2025.

Xiao Q, Yoon S, Ren H, Tivnan M, Sun L, Li Q, Liu T, Zhang Y, Li X, Initiative ADN. Conditional score-based diffusion model for cortical thickness trajectory prediction. In: medical image computing and computer assisted intervention, 2024;pp. 78–87. Springer

Kebaili A, Lapuyade-Lahorgue J, Vera P, Ruan S. 3d mri synthesis with slice-based latent diffusion models: Improving tumor segmentation tasks in data-scarce regimes. In: international symposium on biomedical imaging 2024. IEEE

Guo X, Yang Y, Ye C, Lu S, Peng B, Huang H, Xiang Y, Ma T. Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation. In: international symposium on biomedical imaging, 2023;pp. 1–5. IEEE

Zong Y, Jing C, Chan JH, Wang S. Brainnetdiff: Generative ai empowers brain network construction via multimodal diffusion. In: international symposium on biomedical imaging, 2024;pp. 1–5. IEEE

Jeon S, Song Y, Kim WH. Gene-to-image: Decoding brain images from genetics via latent diffusion models. In: international workshop on predictive intelligence In MEdicine, 2024;pp. 48–60. Springer

Lambert Z, Petitjean C, Dubray B, Kuan S. Segthor: Segmentation of thoracic organs at risk in ct images. In: international conference on image processing theory, tools and applications, 2020;pp. 1–6. IEEE

Thummerer A, Bijl E, Galapon A Jr, Verhoeff JJ, Langendijk JA, Both S, Berg CNA, Maspero M. Synthrad 2023 grand challenge dataset: Generating synthetic ct for radiotherapy. Med Phys. 2023;50(7):4664–74.

Google Scholar 

Cereda CW, Christensen S, Campbell BC, Mishra NK, Mlynash M, Levi C, Straka M, Wintermark M, Bammer R, Albers GW, et al. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a dwi standard. J Cereb Blood Flow Metab. 2016;36(10):1780–9.

Google Scholar 

Perlo D, Tartaglione E, Gava U, D’Agata F, Benninck E, Bergui M. Unitobrain dataset: a brain perfusion dataset. In: international conference on image analysis and processing, 2022;pp. 498–509. Springer

Marinescu RV, Oxtoby NP, Young AL, Bron EE, Toga AW, Weiner MW, Barkhof F, Fox NC, Golland P, Klein S, et al. Tadpole challenge: Accurate alzheimer’s disease prediction through crowdsourced forecasting of future data. In: International Workshop on PRedictive Intelligence In MEdicine, 2019;pp. 1–10. Springer

Kuijf HJ, Biesbroek JM, De Bresser J, Heinen R, Andermatt S, Bento M, Berseth M, Belyaev M, Cardoso MJ, Casamitjana A, et al. Standardized assessment of automatic segmentation of white matter hyperintensities and results of the wmh segmentation challenge. IEEE Trans Med Imaging. 2019;38(11):2556–68.

Google Scholar 

Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X. Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In: conference on computer vision and pattern recognition, 2018;pp. 1316–1324

Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: international conference on computer vision, 2017;pp. 5907–5915

Han L, Zhang T, Huang Y, Dou H, Wang X, Gao Y, Lu C, Tan T, Mann R. An explainable deep framework: Towards task-specific fusion for multi-to-one mri synthesis. In: medical image computing and computer assisted intervention, 2023;pp. 45–55. Springer

Liu C, Pang F, Liu Y, Liang K, Li X, Zeng X, Ye C. Semi-supervised brain lesion segmentation using training images with and without lesions. In: international symposium on biomedical imaging, 2020;pp. 279–282. IEEE

Baek S, Sim J, Dere M, Kim M, Wu G, Kim WH. Modality-agnostic style transfer for holistic feature imputation. In: international symposium on biomedical imaging, 2024;pp. 1–5. IEEE

Baek S, Sim J, Wu G, Kim WH. Ocl: Ordinal contrastive learning for imputating features with progressive labels. In: medical image computing and computer assisted intervention, 2024;pp. 334–344. Springer

Gui L, Ye C, Yan T. Cavm: Conditional autoregressive vision model for contrast-enhanced brain tumor mri synthesis. In: medical image computing and computer assisted intervention, 2024;pp. 161–170. Springer

Ngo GH, Nguyen M, Chen NF, Sabuncu MR. Text2brain: Synthesis of brain activation maps from free-form text query. In: medical image computing and computer assisted intervention, 2021;pp. 605–614. Springer

Li HB, Conte GM, Anwar SM, Kofler F, Ezhov I, Leemput K, Piraud M, Diaz M, Cole B, Calabrese E, et al. The brain tumor segmentation (brats) challenge 2023: Brain mr image synthesis for tumor segmentation (brasyn). ArXiv 2023.

Dockès J, Poldrack RA, Primet R, Gözükan H, Yarkoni T, Suchanek F, Thirion B, Varoquaux G. Neuroquery, comprehensive meta-analysis of human brain mapping. eLife 9,2020;53385

Pinho AL, Amadon A, Gauthier B, Clairis N, Knops A, Genon S, Dohmatob E, Torre JJ, Ginisty C, Becuwe-Desmidt S, et al. Individual brain charting dataset extension, second release of high-resolution fmri data for cognitive mapping. Sci Data. 2020;7(1):353.

Google Scholar 

Konz N, Chen Y, Gu H, Dong H, Mazurowski MA. Rethinking perceptual metrics for medical image translation. In: medical imaging with deep learning 2024.

Gourdeau D, Duchesne S, Archambault L. On the proper use of structural

Comments (0)

No login
gif