Zhao S, Tseng P, Grasman J, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces. Adv Mater. 2018;30:1800598.
Liu Y, Li J, Song S, et al. Morphing electronics enable neuromodulation in growing tissue. Nat Biotechnol. 2020;38:1031–6.
Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3:58–68.
Li G, Huang K, Deng J, Guo M, Cai M, Zhang Y, Guo CF. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv Mater. 2022. https://doi.org/10.1002/adma.202200261.
Jiang Y, Zhang Z, Wang YX, et al. (2022) Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science. 1979;375:1411–7.
Deng J, Yuk H, Wu J, Varela CE, Chen X, Roche ET, Guo CF, Zhao X. Electrical bioadhesive interface for bioelectronics. Nat Mater. 2021;20:229–36.
Hui Y, Yao Y, Qian Q, Luo J, Chen H, Qiao Z, Yu Y, Tao L, Zhou N. Three-dimensional printing of soft hydrogel electronics. Nat Electron. 2022;5:893–903.
He Y, Li Q, Chen P, Duan Q, Zhan J, Cai X, Wang L, Hou H, Qiu X. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-35437-5.
Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater. 2021;20:1559–70.
Jiang Y, Trotsyuk AA, Niu S, et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-022-01528-3.
Lim C, Joseph Hong Y, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv. 2021;7(19):eabd3716.
Luque GC, Picchio ML, Martins APS, Dominguez-Alfaro A, Ramos N, del Agua I, Marchiori B, Mecerreyes D, Minari RJ, Tomé LC. 3D printable and biocompatible iongels for body sensor applications. Adv Electron Mater. 2021. https://doi.org/10.1002/aelm.202100178.
He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun. 2023. https://doi.org/10.1038/s41467-023-36438-8.
Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18503-8.
Cao J, Yang X, Rao J, et al. Stretchable and self-adhesive PEDOT:PSS blend with high sweat tolerance as conformal biopotential dry electrodes. ACS Appl Mater Interfaces. 2022;14:39159–71.
Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-25152-y.
Kabiri Ameri S, Wang L (2020) Graphene electronic tattoo sensors for point-of-care personal health monitoring and human–machine interfaces. In: Emerging 2D Materials and Devices for the Internet of Things. Elsevier, pp 59–86
Tian L, Zimmerman B, Akhtar A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019;3:194–205.
Kim JH, Kim SR, Kil HJ, Kim YC, Park JW. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018;18:4531–40.
Wang Y, Yin L, Bai Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci Adv. 2020;6(43):eabd0996.
Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol. 2021;16:1019–29.
Zhang J, Liu X, Xu W, et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 2018;18:2903–11.
Liu J, Zhang X, Liu Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc Nat Acad Sci. 2020. https://doi.org/10.1073/pnas.2000207117/-/DCSupplemental.
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation. Adv Mater. 2023. https://doi.org/10.1002/adma.202211159.
Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X. 3D printing of conducting polymers. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-15316-7.
Wang L, Wang Y, Yang S, Tao X, Zi Y, Daoud WA. Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy. 2022;91:106611.
Yiming B, Han Y, Han Z, et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv Mater. 2021;33:2006111.
Zhu G, Ren P, Yang J, Hu J, Dai Z, Chen H, Li Y, Li Z. Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy. 2022. https://doi.org/10.1016/j.nanoen.2022.107327.
Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun. 2014. https://doi.org/10.1038/ncomms4002.
Zhang C, Zheng H, Sun J, Zhou Y, Xu W, Dai Y, Mo J, Wang Z. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv Mater. 2022. https://doi.org/10.1002/adma.202105996.
Liu X, Lu C, Wu X, Zhang X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J Mater Chem A Mater. 2017;5:9824–32.
Zhang LM, He Y, Cheng S, Sheng H, Dai K, Zheng WJ, Wang MX, Chen ZS, Chen YM, Suo Z. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small. 2019. https://doi.org/10.1002/smll.201804651.
Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz. 2017;4:694–700.
Lei Z, Wang Q, Sun S, Zhu W, Wu P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater. 2017. https://doi.org/10.1002/adma.201700321.
Wang S, Fang Y, He H, Zhang L, Li C, Ouyang J. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202007495.
Chen W, Liu LX, Bin ZH, Yu ZZ. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2TxMXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano. 2021;15:7668–81.
Wang Y, Lee S, Yokota T, Wang H, Jiang Z, Wang J, Koizumi M, Someya T. durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci Adv. 2020;6:eabb7043.
Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B. Large-scale production of highly stretchable CNT/Cotton/Spandex composite yarn for wearable applications. ACS Appl Mater Interfaces. 2018;10:32726–35.
Oh J, Yang JC, Kim JO, Park H, Kwon SY, Lee S, Sim JY, Oh HW, Kim J, Park S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano. 2018;12:7546–53.
Kim H-J, Sim K, Thukral A, Yu C (2017) Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors.
Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater. 2017. https://doi.org/10.1002/adma.201701218.
Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201807569.
Su Q, Zou Q, Li Y, et al (2021) A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins
Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008;30:599–606.
Manschot JFM, Brakkee AJM. The measurement and modelling of the mechanical properties of human skin in vivo—I. The measurement. J Biomech. 1986;19:511–5.
Niu W, Liu X. Stretchable ionic conductors for soft electronics. Macromol Rapid Commun. 2022;43:2200512.
Liu Y, Wang W, Gu K, Yao J, Shao Z, Chen X. Poly(vinyl alcohol) hydrogels with integrated toughness, conductivity, and freezing tolerance based on ionic liquid/water binary solvent systems. ACS Appl Mater Interfaces. 2021;13:29008–20.
Liu Z, Wang Y, Ren Y, Jin G, Zhang C, Chen W, Yan F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz. 2020;7:919–27.
Qu X, Niu W, Wang R, Li Z, Guo Y, Liu X, Sun J. Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Mater Horiz. 2020;7:2994–3004.
Li Q, Liu Z, Zheng S, Li W, Ren Y, Li L, Yan F. Three-dimensional printable, highly conductive ionic elastomers for high-sensitivity iontronics. ACS Appl Mater Interfaces. 2022;14:26068–76.
Krishnadoss V, Kanjilal B, Masoumi A, Banerjee A, Dehzangi I, Pezhouman A, Ardehali R, Martins-Green M, Leijten J, Noshadi I. Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface. Mater Today Adv. 2023. https://doi.org/10.1016/j.mtadv.2023.100352.
Fidanovski K, Mawad D. Conjugated polymers in bioelectronics: addressing the interface challenge. Adv Healthc Mater. 2019;8:1900053.
Namsheer K, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659–97.
Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.
Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater. 2019;31:1806133.
Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv. 2017. https://doi.org/10.1126/SCIADV.1602076/SUPPL_FILE/1602076_VIDEOS3.MOV.
Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci. 2019;6:1900813.
Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and implantable soft bioelectronics: device designs and material strategies. Ann Rev Chem Biomol Eng. 2021;12(1):359–91.
Savva A, Hallani R, Cendra C, et al. Balancing ionic and electronic c
Comments (0)