Soft, conformal tissue–electrode interfaces for bioelectronic devices: material, fabrication strategies, and applications

Zhao S, Tseng P, Grasman J, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces. Adv Mater. 2018;30:1800598.

Google Scholar 

Liu Y, Li J, Song S, et al. Morphing electronics enable neuromodulation in growing tissue. Nat Biotechnol. 2020;38:1031–6.

Google Scholar 

Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3:58–68.

Google Scholar 

Li G, Huang K, Deng J, Guo M, Cai M, Zhang Y, Guo CF. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv Mater. 2022. https://doi.org/10.1002/adma.202200261.

Google Scholar 

Jiang Y, Zhang Z, Wang YX, et al. (2022) Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science. 1979;375:1411–7.

Google Scholar 

Deng J, Yuk H, Wu J, Varela CE, Chen X, Roche ET, Guo CF, Zhao X. Electrical bioadhesive interface for bioelectronics. Nat Mater. 2021;20:229–36.

Google Scholar 

Hui Y, Yao Y, Qian Q, Luo J, Chen H, Qiao Z, Yu Y, Tao L, Zhou N. Three-dimensional printing of soft hydrogel electronics. Nat Electron. 2022;5:893–903.

Google Scholar 

He Y, Li Q, Chen P, Duan Q, Zhan J, Cai X, Wang L, Hou H, Qiu X. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-35437-5.

Google Scholar 

Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater. 2021;20:1559–70.

Google Scholar 

Jiang Y, Trotsyuk AA, Niu S, et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-022-01528-3.

Google Scholar 

Lim C, Joseph Hong Y, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci Adv. 2021;7(19):eabd3716.

Google Scholar 

Luque GC, Picchio ML, Martins APS, Dominguez-Alfaro A, Ramos N, del Agua I, Marchiori B, Mecerreyes D, Minari RJ, Tomé LC. 3D printable and biocompatible iongels for body sensor applications. Adv Electron Mater. 2021. https://doi.org/10.1002/aelm.202100178.

Google Scholar 

He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun. 2023. https://doi.org/10.1038/s41467-023-36438-8.

Google Scholar 

Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18503-8.

Google Scholar 

Cao J, Yang X, Rao J, et al. Stretchable and self-adhesive PEDOT:PSS blend with high sweat tolerance as conformal biopotential dry electrodes. ACS Appl Mater Interfaces. 2022;14:39159–71.

Google Scholar 

Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-25152-y.

Google Scholar 

Kabiri Ameri S, Wang L (2020) Graphene electronic tattoo sensors for point-of-care personal health monitoring and human–machine interfaces. In: Emerging 2D Materials and Devices for the Internet of Things. Elsevier, pp 59–86

Tian L, Zimmerman B, Akhtar A, et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019;3:194–205.

Google Scholar 

Kim JH, Kim SR, Kil HJ, Kim YC, Park JW. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018;18:4531–40.

Google Scholar 

Wang Y, Yin L, Bai Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci Adv. 2020;6(43):eabd0996.

Google Scholar 

Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol. 2021;16:1019–29.

Google Scholar 

Zhang J, Liu X, Xu W, et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 2018;18:2903–11.

Google Scholar 

Liu J, Zhang X, Liu Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc Nat Acad Sci. 2020. https://doi.org/10.1073/pnas.2000207117/-/DCSupplemental.

Google Scholar 

Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation. Adv Mater. 2023. https://doi.org/10.1002/adma.202211159.

Google Scholar 

Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X. 3D printing of conducting polymers. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-15316-7.

Google Scholar 

Wang L, Wang Y, Yang S, Tao X, Zi Y, Daoud WA. Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy. 2022;91:106611.

Google Scholar 

Yiming B, Han Y, Han Z, et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv Mater. 2021;33:2006111.

Google Scholar 

Zhu G, Ren P, Yang J, Hu J, Dai Z, Chen H, Li Y, Li Z. Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy. 2022. https://doi.org/10.1016/j.nanoen.2022.107327.

Google Scholar 

Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun. 2014. https://doi.org/10.1038/ncomms4002.

Google Scholar 

Zhang C, Zheng H, Sun J, Zhou Y, Xu W, Dai Y, Mo J, Wang Z. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv Mater. 2022. https://doi.org/10.1002/adma.202105996.

Google Scholar 

Liu X, Lu C, Wu X, Zhang X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J Mater Chem A Mater. 2017;5:9824–32.

Google Scholar 

Zhang LM, He Y, Cheng S, Sheng H, Dai K, Zheng WJ, Wang MX, Chen ZS, Chen YM, Suo Z. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small. 2019. https://doi.org/10.1002/smll.201804651.

Google Scholar 

Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz. 2017;4:694–700.

Google Scholar 

Lei Z, Wang Q, Sun S, Zhu W, Wu P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater. 2017. https://doi.org/10.1002/adma.201700321.

Google Scholar 

Wang S, Fang Y, He H, Zhang L, Li C, Ouyang J. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202007495.

Google Scholar 

Chen W, Liu LX, Bin ZH, Yu ZZ. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2TxMXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano. 2021;15:7668–81.

Google Scholar 

Wang Y, Lee S, Yokota T, Wang H, Jiang Z, Wang J, Koizumi M, Someya T. durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci Adv. 2020;6:eabb7043.

Google Scholar 

Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B. Large-scale production of highly stretchable CNT/Cotton/Spandex composite yarn for wearable applications. ACS Appl Mater Interfaces. 2018;10:32726–35.

Google Scholar 

Oh J, Yang JC, Kim JO, Park H, Kwon SY, Lee S, Sim JY, Oh HW, Kim J, Park S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano. 2018;12:7546–53.

Google Scholar 

Kim H-J, Sim K, Thukral A, Yu C (2017) Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors.

Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater. 2017. https://doi.org/10.1002/adma.201701218.

Google Scholar 

Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201807569.

Google Scholar 

Su Q, Zou Q, Li Y, et al (2021) A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins

Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008;30:599–606.

Google Scholar 

Manschot JFM, Brakkee AJM. The measurement and modelling of the mechanical properties of human skin in vivo—I. The measurement. J Biomech. 1986;19:511–5.

Google Scholar 

Niu W, Liu X. Stretchable ionic conductors for soft electronics. Macromol Rapid Commun. 2022;43:2200512.

Google Scholar 

Liu Y, Wang W, Gu K, Yao J, Shao Z, Chen X. Poly(vinyl alcohol) hydrogels with integrated toughness, conductivity, and freezing tolerance based on ionic liquid/water binary solvent systems. ACS Appl Mater Interfaces. 2021;13:29008–20.

Google Scholar 

Liu Z, Wang Y, Ren Y, Jin G, Zhang C, Chen W, Yan F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz. 2020;7:919–27.

Google Scholar 

Qu X, Niu W, Wang R, Li Z, Guo Y, Liu X, Sun J. Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Mater Horiz. 2020;7:2994–3004.

Google Scholar 

Li Q, Liu Z, Zheng S, Li W, Ren Y, Li L, Yan F. Three-dimensional printable, highly conductive ionic elastomers for high-sensitivity iontronics. ACS Appl Mater Interfaces. 2022;14:26068–76.

Google Scholar 

Krishnadoss V, Kanjilal B, Masoumi A, Banerjee A, Dehzangi I, Pezhouman A, Ardehali R, Martins-Green M, Leijten J, Noshadi I. Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface. Mater Today Adv. 2023. https://doi.org/10.1016/j.mtadv.2023.100352.

Google Scholar 

Fidanovski K, Mawad D. Conjugated polymers in bioelectronics: addressing the interface challenge. Adv Healthc Mater. 2019;8:1900053.

Google Scholar 

Namsheer K, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659–97.

Google Scholar 

Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.

Google Scholar 

Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater. 2019;31:1806133.

Google Scholar 

Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv. 2017. https://doi.org/10.1126/SCIADV.1602076/SUPPL_FILE/1602076_VIDEOS3.MOV.

Google Scholar 

Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci. 2019;6:1900813.

Google Scholar 

Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and implantable soft bioelectronics: device designs and material strategies. Ann Rev Chem Biomol Eng. 2021;12(1):359–91.

Google Scholar 

Savva A, Hallani R, Cendra C, et al. Balancing ionic and electronic c

Comments (0)

No login
gif