Abnormal theta- and gamma-band cortical activities during visuospatial attention in idiopathic REM sleep behavior disorder patients

Mahowald MW, Schenck CH. REM sleep parasomnias. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. Philadelphia: W.B. Saunders; 2010. p. 1083–97.

Google Scholar 

Ferini-Strambi L, Marelli S, Galbiati A, Rinaldi F, Giora E. REM sleep behavior disorder (RBD) as a marker of neurodegenerative disorders. Arch Ital Biol. 2014;152:129–46.

Google Scholar 

Galbiati A, Verga L, Giora E, Zucconi M, Ferini-Strambi L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies. Sleep Med Rev. 2019;43:37–46.

Google Scholar 

Ferreira D, Przybelski SA, Lesnick TG, et al. Longitudinal FDG-PET metabolic change along the Lewy body continuum. JAMA Neurol. 2025;82:285.

Google Scholar 

Rahayel S, Tremblay C, Vo A, et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145:3162–78.

Google Scholar 

Fantini ML, Farini E, Ortelli P, Zucconi M, Manconi M, Cappa S, Ferini-Strambi L. Longitudinal study of cognitive function in idiopathic REM sleep behavior disorder. Sleep. 2011;34:619–25.

Google Scholar 

Massicotte-Marquez J, Décary A, Gagnon JF, Vendette M, Mathieu A, Postuma RB, Carrier J, Montplaisir J. Executive dysfunction and memory impairment in idiopathic REM sleep behavior disorder. Neurology. 2008;70:1250–7.

Google Scholar 

Her S, Cha KS, Choi JW, Kim H, Byun J-I, Sunwoo J-S, Kim T-J, Lim J-A, Jung K-Y, Kim KH. Impaired visuospatial attention revealed by theta- and beta-band cortical activities in idiopathic REM sleep behavior disorder patients. Clin Neurophysiol. 2019;130:1962–70.

Google Scholar 

Kim H, Seo P, Kim MJ, Huh II J, Sunwoo JS, Cha KS, Jeong E, Kim HJ, Jung KY, Kim KH. Characterization of attentional event-related potential from REM sleep behavior disorder patients based on explainable machine learning. Comput Methods Programs Biomed. 2023;234: 107496.

Google Scholar 

Gong SY, Shen Y, Gu HY, Zhuang S, Fu X, Wang QJ, Mao CJ, Hu H, Dai YP, Liu CF. Generalized EEG slowing across phasic REM sleep, not subjective RBD severity, predicts neurodegeneration in idiopathic RBD. Nat Sci Sleep. 2022;14:407–18.

Google Scholar 

Fantini ML, Ferini-Strambi L, Montplaisir J. Idiopathic REM sleep behavior disorder toward a better nosologic definition. Neurology. 2005;64:780–6.

Google Scholar 

Benz N, Hatz F, Bousleiman H, et al. Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction. Front Aging Neurosci. 2014;6:1–6.

Google Scholar 

Inoue Y, Sasai T, Hirata K. Electroencephalographic finding in idiopathic REM sleep behavior disorder. Neuropsychobiology. 2015;71:25–33.

Google Scholar 

Womelsdorf T, Fries P. The role of neuronal synchronization in selective attention. Curr Opin Neurobiol. 2007;17:154–60.

Google Scholar 

Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53:63–88.

Google Scholar 

Tabar YR, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng. 2017. https://doi.org/10.1088/1741-2560/14/1/016003.

Google Scholar 

Ruffini G, Ibañez D, Castellano M, Dubreuil-Vall L, Soria-Frisch A, Postuma R, Gagnon JF, Montplaisir J. Deep learning with EEG spectrograms in rapid eye movement behavior disorder. Front Neurol. 2019;10:1–9.

Google Scholar 

Spooner RK, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW. Prefrontal theta modulates sensorimotor gamma networks during the reorienting of attention. Hum Brain Mapp. 2020;41:520–9.

Google Scholar 

Müller MM, Gruber T, Keil A. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol. 2000;38:283–99.

Google Scholar 

Sateia MJ. International classification of sleep disorders-third edition highlights and modifications. Chest. 2014;146:1387–94.

Google Scholar 

Kang Y, Na DL, Hahn S. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15:300–8.

Google Scholar 

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

Google Scholar 

Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging. 2008;26:1041–54.

Google Scholar 

Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

Google Scholar 

Kim H, Seo P, Byun JI, Jung KY, Kim KH. Spatiotemporal characteristics of cortical activities of REM sleep behavior disorder revealed by explainable machine learning using 3D convolutional neural network. Sci Rep. 2023;13:8221.

Google Scholar 

Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE international conference on computer vision 2015 Inter. 2015, pp. 4489–4497

Kingma DP, Ba JL. Adam: a method for stochastic optimization. In: 3rd International conference on learning representations, ICLR 2015 —conference track proceedings. 2015, pp. 1–15

Mostafa S, Mondal D, Beck MA, Bidinosti CP, Henry CJ, Stavness I. Leveraging guided backpropagation to select convolutional neural networks for plant classification. Front Artif Intell. 2022;5:1–14.

Google Scholar 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128:336–59.

Google Scholar 

Jiang PT, Bin ZC, Hou Q, Cheng MM, Wei Y. LayerCAM: exploring hierarchical class activation maps for localization. IEEE Trans Image Process. 2021;30:5875–88.

Google Scholar 

Magazzini L, Singh KD. Spatial attention modulates visual gamma oscillations across the human ventral stream. Neuroimage. 2018;166:219–29.

Google Scholar 

Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron. 2008;60:709–19.

Google Scholar 

Schneider TR, Debener S, Oostenveld R, Engel AK. Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. Neuroimage. 2008;42:1244–54.

Google Scholar 

Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science (1979). 2001;291:1560–3.

Google Scholar 

Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–24.

Google Scholar 

Park GY, Kim T, Park J, Lee EM, Ryu HU, Kim SI, Kim IY, Kang JK, Jang DP, Husain M. Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans. Hum Brain Mapp. 2016;37:3041–54.

Google Scholar 

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

Google Scholar 

Green JJ, McDonald JJ. Electrical neuroimaging reveals timing of attentional control activity in human brain. PLoS Biol. 2008;6:730–8.

Google Scholar 

Coull JT, Frith CD. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage. 1998;8:176–87.

Google Scholar 

Byun JI, Lee BU, Kim M, et al. Reduced P300 amplitude during a visuospatial attention task in idiopathic rapid eye movement sleep behavior disorder. Sleep Med. 2017;38:78–84.

Google Scholar 

Sauseng P, Griesmayr B, Freunberger R, Klimesch W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev. 2010;34:1015–22.

Google Scholar 

Liang T, Hu Z, Liu Q. Frontal theta activity supports detecting mismatched information in visual working memory. Front Psychol. 2017;8:1–8.

Google Scholar 

Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18:414–21.

Google Scholar 

Spadone S, Betti V, Sestieri C, Pizzella V, Corbetta M, Della Penna S. Spectral signature of attentional reorienting in the human brain. Neuroimage. 2021;244: 118616.

Google Scholar 

Chang CF, Liang WK, Lai CL, Hung DL, Juan CH. Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Front Hum Neurosci. 2016;10:1–11.

Google Scholar 

Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci. 2018;20:133–40.

Google Scholar 

Burgess PW, Dumontheil I, Gilbert SJ. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci. 2007;11:290–8.

Google Scholar 

Doallo S, Lorenzo-López L, Vizoso C, Rodríguez Holguín S, Amenedo E, Bará S, Cadaveira F. Modulations of the visual N1 component of event-related potentials by central and peripheral cueing. Clin Neurophysiol. 2005;116:807–20.

Google Scholar 

Prime DJ, Jolicoeur P. Response-selection conflict contributes to inhibition of return. J Cogn Neurosci. 2009;21:991–9.

Google Scholar 

Mammone N, Ieracitano C, Morabito FC. A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level. Neural Netw. 2020;124:357–72.

Google Scholar 

Comments (0)

No login
gif