Subsidence reduction effect of transforaminal lumbar interbody fusion (TLIF) with upper and lower open windows modified with lattice structure

Soliman MA, Aguirre AO, Kuo CC, Ruggiero N, Azmy S, et al. Vertebral bone quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2022;22(12):2017–23. https://doi.org/10.1016/j.spinee.2022.08.002.

Article  Google Scholar 

Ran L, Xie T, Zhao L, Huang S, Zeng J. Low Hounsfield units on computed tomography are associated with cage subsidence following oblique lumbar interbody fusion (OLIF). Spine J. 2022;22(6):957–64. https://doi.org/10.1016/j.spinee.2022.01.018.

Article  Google Scholar 

Kim CH, Easley K, Lee JS, Hong JY, Virk M, et al. Comparison of minimally invasive versus open transforaminal interbody lumbar fusion. Global Spine J. 2020;10(10(2_suppl)):143S-150S. https://doi.org/10.1177/2192568219882344.

Article  Google Scholar 

Shen S, You X, Ren Y, Ye S. Risk factors of cage subsidence following oblique lumbar interbody fusion: a meta-analysis and systematic review. World Neurosurg. 2024;183:180–6. https://doi.org/10.1016/j.wneu.2023.12.110.

Article  Google Scholar 

Hu YH, Yeh YC, Niu CC, Hsieh MK, Tsai TT, et al. Novel MRI-based vertebral bone quality score as a predictor of cage subsidence following transforaminal lumbar interbody fusion. J Neurosurg Spine. 2022;37(5):654–62. https://doi.org/10.3171/2022.3.SPINE211489.

Article  Google Scholar 

Hiyama A, Sakai D, Katoh H, Nomura S, Sato M, et al. Comparative study of cage subsidence in single-level lateral lumbar interbody fusion. J Clin Med. 2022;11(5):1374. https://doi.org/10.3390/jcm11051374.

Article  Google Scholar 

Schuler KA, Orosz LD, Yamout T, Allen B, Lerebo WT, et al. P35. Performance comparison between Hounsfield units and DEXA in predicting lumbar interbody cage subsidence after circumferential lumbar fusion. North Am Spine Soc J (NASSJ). 2024;18:100439. https://doi.org/10.1016/j.xnsj.2024.100439.

Article  Google Scholar 

Chen Q, Ai Y, Huang Y, Li Q, Wang J, et al. MRI-based Endplate Bone Quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2023;23(11):1652–8. https://doi.org/10.1016/j.spinee.2023.07.002.

Article  Google Scholar 

Li G, Yang L, Wu G, Qian Z, Li H. An update of interbody cages for spine fusion surgeries: from shape design to materials. Expert Rev Med Dev. 2022;19(12):977–89. https://doi.org/10.1080/17434440.2022.2165912.

Article  Google Scholar 

Thayaparan GK, Owbridge MG, Linden M, Thompson RG, Lewis PM, et al. Measuring the performance of patient-specific solutions for minimally invasive transforaminal lumbar interbody fusion surgery. J Clin Neurosci. 2020;71:43–50. https://doi.org/10.1016/j.jocn.2019.11.008.

Article  Google Scholar 

Godolias P, Tataryn ZL, Plümer J, Cibura C, Freyvert Y, et al. Cage subsidence—A multifactorial matter! Die Orthopädie. 2023;52(8):662–9. https://doi.org/10.1007/s00132-023-04363-9.

Article  Google Scholar 

Wang K, Wang X, Li Z, Xie T, Wang L, et al. The influence of screw positioning on cage subsidence in patients with oblique lumbar interbody fusion combined with anterolateral fixation. Orthop Surg. 2023;15(12):3263–71. https://doi.org/10.1111/os.13882.

Article  Google Scholar 

Di M, Weng Y, Wang G, Bian H, Qi H, et al. Cortical endplate bone density measured by novel phantomless quantitative computed tomography may predict cage subsidence more conveniently and accurately. Orthop Surg. 2023;15(12):3126–35. https://doi.org/10.1111/os.13897.

Article  Google Scholar 

Jin YJ, Kim YE, Seo JH, Choi HW, Jahng TA. Effects of rod stiffness and fusion mass on the adjacent segments after floating mono-segmental fusion: a study using finite element analysis. Eur Spine J. 2013;22:1066–77. https://doi.org/10.1007/s00586-012-2611-6.

Article  Google Scholar 

Choi HW, Kim YE. Effect of lumbar fasciae on the stability of the lower lumbar spine. Comput Methods Biomech Biomed Engin. 2017;20(13):1431–7. https://doi.org/10.1080/10255842.2017.1370459.

Article  Google Scholar 

Agrawal BM, Resnick D. Transforaminal lumbar interbody fusion: indications and techniques. In Schmidek and Sweet operative neurosurgical techniques. 2012; (pp. 1951–1954) WB Saunders.

Gum JL, Reddy D, Glassman S. Transforaminal lumbar interbody fusion (TLIF). JBJS Essent Surg Tech. 2016;6(2): e22.

Google Scholar 

Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine. 1995;20(6):689–98.

Google Scholar 

Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine. 1995;20(8):887–900.

Google Scholar 

Wu J, Feng Q, Yang D, Xu H, Wen W, et al. Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis. BMC Musculoskelet Disord. 2023;24(1):85. https://doi.org/10.1186/s12891-023-06201-7.

Article  Google Scholar 

Dahl MC, Ellingson AM, Mehta HP, Huelman JH, Nuckley DJ. The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. Spine J. 2013;13(2):175–83. https://doi.org/10.1016/j.spinee.2012.11.045.

Article  Google Scholar 

Santoni B, Cabezas AF, Cook DJ, Yeager MS, Billys JB et al. Comparison of intervertebral ROM in multi-level cadaveric lumbar spines using distinct pure moment loading approaches. International journal of spine surgery. 2015;9.

Jaramillo HE, Puttlitz CM, McGilvray K, García JJ. Characterization of the L4–L5–S1 motion segment using the stepwise reduction method. J Biomech. 2016;49(7):1248–54. https://doi.org/10.1016/j.jbiomech.2016.02.050.

Article  Google Scholar 

Agarwal A, Palepu V, Agarwal AK, Goel VK, Yildirim ED. Biomechanical evaluation of an endplate-conformed polycaprolactone-hydroxyapatite intervertebral fusion graft and its comparison with a typical nonconformed cortical graft. J Biomech Eng. 2013;135(6): 061005. https://doi.org/10.1115/1.4023988.

Article  Google Scholar 

Bianco RJ, Arnoux PJ, Wagnac E, Mac-Thiong JM, Aubin CÉ. Minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement. Clinic Spine Surg. 2017;30(3):E226–32.

Google Scholar 

Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, et al. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014;47(8):1757–66. https://doi.org/10.1016/j.jbiomech.2014.04.002.

Article  Google Scholar 

Warren JM, Mazzoleni AP, Hey LA. Development and validation of a computationally efficient finite element model of the human lumbar spine: application to disc degeneration. Int J Spine Surg. 2020;14(4):502–10.

Google Scholar 

Sengul E, Ozmen R, Yaman ME, Demir T. Influence of posterior pedicle screw fixation at L4–L5 level on biomechanics of the lumbar spine with and without fusion: a finite element method. Biomed Eng Online. 2021;20:1–19. https://doi.org/10.1186/s12938-021-00940-1.

Article  Google Scholar 

Sokollu B, Gulcan O, Konukseven EI. Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting. Addit Manuf. 2022;60: 103199. https://doi.org/10.1016/j.addma.2022.103199.

Article  Google Scholar 

Wang C, Zhang L, Lin K, Lin X, Shen S, et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng, C. 2021;131: 112499. https://doi.org/10.1016/j.msec.2021.112499.

Article  Google Scholar 

Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824–34. https://doi.org/10.1016/j.actbio.2012.04.001.

Article  Google Scholar 

Li S, Zhang Y, Wu Y, Chen J, Liu L, et al. Structural design and mechanical performance evaluation of personalized irregular porous L3–L4 fusion cage by additive manufacturing. Comput Biol Med. 2025;187: 109796. https://doi.org/10.1016/j.compbiomed.2024.109796.

Article  Google Scholar 

Yu Y, Chen X, Zhang Y, Liu H, Wang L, et al. The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: an in-vitro experimental study. J Mech Behav Biomed Mater. 2024;160: 106754. https://doi.org/10.1016/j.jmbbm.2024.106754.

Article  Google Scholar 

Kiapour A, Alikhani P. 76. Effect of implant endplate surface topology on subsidence resistance in cervical interbody fixation: comparison of two 3D printed titanium cervical spine fixation devices. Spine J. 2021;21(9):S37–8. https://doi.org/10.1016/j.spinee.2021.05.101.

Article  Google Scholar 

Huang Y, Chen Q, Liu L, Feng G. Vertebral bone quality score to predict cage subsidence following oblique lumbar interbody fusion. J Orthop Surg Res. 2023;18(1):258. https://doi.org/10.1186/s13018-023-03729-1.

Article  Google Scholar 

Calek A-K, Schilling C, Reintjes N, Schmidt H. Load distribution on intervertebral cages with and without posterior instrumentation. Spine J. 2024;24(5):889–98.

Google Scholar 

Comments (0)

No login
gif