Optimized multi-stage network with multi-dimensional spatiotemporal interactions for septal and apical hypertrophic cardiomyopathy classification using 12-lead ECGs

Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy. Circ Heart Fail. 2012;5(4):535–46. https://doi.org/10.1161/CIRCHEARTFAILURE.112.967026.

Article  Google Scholar 

Maron BJ, Haas TS, Murphy CJ, Ahluwalia A, Rutten-Ramos S. Incidence and causes of sudden death in us college athletes. J Am Coll Cardiol. 2014;63(16):1636–43.

Google Scholar 

Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic cardiomyopathy: from phenotype and pathogenesis to treatment. Front Cardiovasc Med. 2021;8: 722340.

Google Scholar 

Yan L, Wang Z, Xu Z, Li Y, Tao Y, Fan C. Two hundred eight patients with apical hypertrophic cardiomyopathy in China: clinical feature, prognosis, and comparison of pure and mixed forms. Clin Cardiol. 2012;35(2):101–6.

Google Scholar 

Kim EK, Lee SC, Hwang JW, Chang SA, Park SJ, On YK, Park KM, Choe YH, Kim SM, Park SW, et al. Differences in apical and non-apical types of hypertrophic cardiomyopathy: a prospective analysis of clinical, echocardiographic, and cardiac magnetic resonance findings and outcome from 350 patients. Eur Heart J Cardiovasc Imag. 2016;17(6):678–86.

Google Scholar 

Chen QF, Zou J, Katsouras CS, You S, Zhou J, Ge HB, Liu C, Zhou X, Ni C, Peng Y, et al. Clinical characteristics and outcomes in patients with apical and nonapical hypertrophic cardiomyopathy. J Am Heart Assoc. 2024;13(19): e036663.

Google Scholar 

Reant P, Reynaud A, Pillois X, Dijos M, Arsac F, Touche C, Landelle M, Rooryck C, Roudaut R, Lafitte S. Comparison of resting and exercise echocardiographic parameters as indicators of outcomes in hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2015;28(2):194–203. https://doi.org/10.1016/j.echo.2014.10.001.

Article  Google Scholar 

Chen CC, Lei MH, Hsu YC, Chung SL, Sung YJ. Apical hypertrophic cardiomyopathy: Correlations between echocardiographic parameters, angiographic left ventricular morphology, and clinical outcomes. Clin Cardiol. 2011;34(4):233–8. https://doi.org/10.1002/clc.20874.

Article  Google Scholar 

Huang PS, Tseng YH, Tsai CF, Chen JJ, Yang SC, Chiu FC, Chen ZW, Hwang JJ, Chuang EY, Wang YC, Tsai CT. An artificial intelligence-enabled ECG algorithm for the prediction and localization of angiography-proven coronary artery disease. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10020394.

Article  Google Scholar 

McLeod CJ, Ackerman MJ, Nishimura RA, Tajik AJ, Gersh BJ, Ommen SR. Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. J Am Coll Cardiol. 2009;54(3):229–33.

Google Scholar 

Liu Y, Liu J, Qin C, Jin Y, Li Z, Zhao L, Liu C. A deep learning-based acute coronary syndrome-related disease classification method: A cohort study for network interpretability and transfer learning. Appl Intell. 2023;53(21):25562–80.

Google Scholar 

Abinader EG. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40(4):837–8. https://doi.org/10.1016/S0735-1097(02)02020-X.

Article  Google Scholar 

Lim J, Lee Y, Jang W, Joo S. Specialized ecg data augmentation method: leveraging precordial lead positional variability. Biomed Eng Lett. 2025;15:377.

Google Scholar 

Rahman QA, Tereshchenko LG, Kongkatong M, Abraham T, Abraham MR, Shatkay H. Utilizing ecg-based heartbeat classification for hypertrophic cardiomyopathy identification. IEEE Trans Nanobiosci. 2015;14(5):505–12.

Google Scholar 

Lyon A, Ariga R, Mincholé A, Mahmod M, Ormondroyd E, Laguna P, De Freitas N, Neubauer S, Watkins H, Rodriguez B. Distinct ecg phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front Physiol. 2018;9:213.

Google Scholar 

Rowin EJ, Maron BJ, Appelbaum E, Link MS, Gibson CM, Lesser JR, Haas TS, Udelson JE, Manning WJ, Maron MS. Significance of false negative electrocardiograms in preparticipation screening of athletes for hypertrophic cardiomyopathy. Am J Cardiol. 2012;110(7):1027–32.

Google Scholar 

Tison GH, Zhang J, Delling FN, Deo RC. Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery. Circ Cardiovasc Qual Outcomes. 2019;12(9): e005289.

Google Scholar 

Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, Demuth SJ, Ackerman MJ, Gersh BJ, Arruda-Olson AM, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J Am Coll Cardiol. 2020;75(7):722–33.

Google Scholar 

Nasarre M, Strik M, Daniel Ramirez F, Buliard S, Marchand H, Abu-Alrub S, Ploux S, Haïssaguerre M, Bordachar P. Using a smartwatch electrocardiogram to detect abnormalities associated with sudden cardiac arrest in young adults. EP Europace. 2022;24(3):406–12.

Google Scholar 

Goto S, Solanki D, John JE, Yagi R, Homilius M, Ichihara G, Katsumata Y, Gaggin HK, Itabashi Y, MacRae CA, et al. Multinational federated learning approach to train ecg and echocardiogram models for hypertrophic cardiomyopathy detection. Circulation. 2022;146(10):755–69.

Google Scholar 

Carrick RT, Ahamed H, Sung E, Maron MS, Madias C, Avula V, Studley R, Bao C, Bokhari N, Quintana E, et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: a deep-learning approach. Heart Rhythm. 2024;21:1390.

Google Scholar 

Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput Biol Med. 2020;122: 103801.

Google Scholar 

Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65–9.

Google Scholar 

Lu X, Wang X, Zhang W, Wen A, Ren Y. An end-to-end model for ECG signals classification based on residual attention network. Biomed Signal Process Control. 2023;80: 104369.

Google Scholar 

Huang ML, Wu YS. Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network. Biomed Eng Lett. 2020;10(2):183–93.

MathSciNet  Google Scholar 

Rashed-Al-Mahfuz M, Moni MA, Lio’ P, Islam S, Berkovsky S, Khushi M, Quinn JM. Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions. Biomed Eng Lett. 2021;11:147–62.

Google Scholar 

Petmezas G, Haris K, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets. Biomed Signal Process Control. 2021;63: 102194.

Google Scholar 

Choi JW, Hong DY, Jung C, Hwang E, Park SH, Roh SY. A multi-view learning approach to enhance automatic 12-lead ecg diagnosis performance. Biomed Signal Process Control. 2024;93: 106214.

Google Scholar 

Zhang H, Zhao W, Liu S. Se-ecgnet: a multi-scale deep residual network with squeeze-and-excitation module for ecg signal classification. In: 2020 IEEE International conference on bioinformatics and biomedicine (BIBM), 2020;2685–2691 https://doi.org/10.1109/BIBM49941.2020.9313548.

Chen J, Chen T, Xiao B, Bi X, Wang Y, Duan H, Li W, Zhang J, Ma X. Se-ecgnet: multi-scale se-net for multi-lead ECG data. In: 2020 Computing in Cardiology. 2020;1–4, https://doi.org/10.22489/CinC.2020.085.

Tao R, Wang L, Xiong Y, Zeng YR. Im-ECG: an interpretable framework for arrhythmia detection using multi-lead ECG. Expert Syst Appl. 2024;237: 121497.

Google Scholar 

Zhang P, Ma C, Sun Y, Fan G, Song F, Feng Y, Zhang G. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings. Comput Biol Med. 2021;139: 104880. https://doi.org/10.1016/j.compbiomed.2021.104880.

Article  Google Scholar 

Jetley S, Lord NA, Lee N, Torr PH. Learn to pay attention. In: International conference on learning representations. 2018.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 3rd International conference on learning representations, ICLR, 2015.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015;1–9, https://doi.org/10.1109/CVPR.2015.7298594.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016;770–778.

Wang R, Fan J, Li Y. Deep multi-scale fusion neural network for multi-class arrhythmia detection. IEEE J Biomed Health Inform. 2020;24(9):2461–72.

Google Scholar 

Murugesan B, Ravichandran V, Ram K, Preejith S, Joseph J, Shankaranarayana SM, Sivaprakasam M. Ecgnet: deep network for arrhythmia classification. In: 2018 IEEE International symposium on medical measurements and applications (MeMeA), IEEE. 2018;1–6.

Ribeiro AH, Ribeiro MH, Paixão GM, Oliveira DM, Gomes PR, Canazart JA, Ferreira MP, Andersson CR, Macfarlane PW, Meira W Jr, et al. Automatic diagnosis of the 12-lead ecg using a deep neural network. Nat Commun. 2020;11(1):1760.

Google Scholar 

Yang S, Lian C, Zeng Z, Xu B, Zang J, Zhang Z. A multi-view multi-scale neural network for multi-label ECG classification. IEEE Trans Emerg Top Comput Intell. 2023;7(3):648–60. https://doi.org/10.1109/TETCI.2023.3235374.

Article  Google Scholar 

Mantravadi A, Saini S, Mittal S, Shah S, Devi S, Singhal R, et al. Clinet: A novel deep learning network for ECG signal classification. J Electrocardiol. 2024;83:41–8.

Google Scholar 

Comments (0)

No login
gif