Nanoengineered cytotoxic T cells for photoacoustic image-guided combinatorial cancer therapy

Caruso F, Hyeon T, Rotello VM. Nanomedicine. Chem Soc Rev. 2012;41:2537–8. https://doi.org/10.1039/c2cs90005j.

Article  Google Scholar 

Adabi M, et al. Biocompatibility and nanostructured materials: applications in nanomedicine. Artif Cells Nanomed Biotechnol. 2017;45:833–42. https://doi.org/10.1080/21691401.2016.1178134.

Article  Google Scholar 

Euliss LE, DuPont JA, Gratton S, DeSimone J. Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev. 2006;35:1095–104. https://doi.org/10.1039/b600913c.

Article  Google Scholar 

Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6:815–35. https://doi.org/10.2217/nnm.11.79.

Article  Google Scholar 

Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: a quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev. 2023;194: 114708. https://doi.org/10.1016/j.addr.2023.114708.

Article  Google Scholar 

Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050–60. https://doi.org/10.1021/ar200106e.

Article  Google Scholar 

Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79. https://doi.org/10.1016/j.addr.2010.07.009.

Article  Google Scholar 

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330.

Article  Google Scholar 

Meng H, Leong W, Leong KW, Chen C, Zhao Y. Walking the line: the fate of nanomaterials at biological barriers. Biomaterials. 2018;174:41–53. https://doi.org/10.1016/j.biomaterials.2018.04.056.

Article  Google Scholar 

Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res. 2024;14:3032–54. https://doi.org/10.1007/s13346-024-01591-0.

Article  Google Scholar 

Doshi N, et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater. 2011;23:H105-109. https://doi.org/10.1002/adma.201004074.

Article  Google Scholar 

Zelepukin IV, et al. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale. 2019;11:1636–46. https://doi.org/10.1039/c8nr07730d.

Article  Google Scholar 

Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based cell trackers for biomedical applications. Theranostics. 2020;10:1923–47. https://doi.org/10.7150/thno.39915.

Article  Google Scholar 

Kulkarni AD, Mukarrama T, Barlow BR, Kim J. Recent advances in non-invasive in vivo tracking of cell-based cancer immunotherapies. Biomater Sci. 2025;13:1939–59. https://doi.org/10.1039/d4bm01677g.

Article  Google Scholar 

Bayer CL, Luke GP, Emelianov SY. Photoacoustic imaging for medical diagnostics. Acoust Today. 2012;8:15–23. https://doi.org/10.1121/1.4788648.

Article  Google Scholar 

Emelianov SY, Li PC, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62:34–9. https://doi.org/10.1063/1.3141939.

Article  Google Scholar 

Kim J, Yu AM, Kubelick KP, Emelianov SY. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. Photoacoustics. 2022;25: 100307. https://doi.org/10.1016/j.pacs.2021.100307.

Article  Google Scholar 

Luke GP, Yeager D, Emelianov SY. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng. 2012;40:422–37. https://doi.org/10.1007/s10439-011-0449-4.

Article  Google Scholar 

Assi H, et al. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: from current barriers to future adoption. Photoacoustics. 2023;32: 100539. https://doi.org/10.1016/j.pacs.2023.100539.

Article  Google Scholar 

Kim M, et al. Coupling gold nanospheres into nanochain constructs for high-contrast, longitudinal photoacoustic imaging. Nano Lett. 2024;24:7202–10. https://doi.org/10.1021/acs.nanolett.4c00992.

Article  Google Scholar 

Kim M, et al. Hyper-branched gold nanoconstructs for photoacoustic imaging in the near-infrared optical window. Nano Lett. 2023;23:9257–65. https://doi.org/10.1021/acs.nanolett.3c02177.

Article  Google Scholar 

Chen YS, Zhao Y, Yoon SJ, Gambhir SS, Emelianov S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol. 2019;14:465–72. https://doi.org/10.1038/s41565-019-0392-3.

Article  Google Scholar 

Barlow BR, Kim J. Next Generation Gold Nanomaterials for Photoacoustic Imaging. Nanomedicine 2019;20(12):1479–93. https://doi.org/10.1080/17435889.2025.2504330

Article  Google Scholar 

Jhunjhunwala A, Kim J, Kubelick KP, Ethier CR, Emelianov SY. In vivo photoacoustic monitoring of stem cell location and apoptosis with caspase-3-responsive nanosensors. ACS Nano. 2023;17:17931–45. https://doi.org/10.1021/acsnano.3c04161.

Article  Google Scholar 

Kubelick KP, et al. In vivo ultrasound and photoacoustic imaging of nanoparticle-engineered T cells and post-treatment assessment to guide adoptive cell immunotherapy. ACS Nano. 2025;19:6079–94. https://doi.org/10.1021/acsnano.4c12929.

Article  Google Scholar 

Zhang Z, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24:1418–23. https://doi.org/10.1002/adma.201104714.

Article  Google Scholar 

Chen YS, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express. 2010;18:8867–78. https://doi.org/10.1364/OE.18.008867.

Article  Google Scholar 

Chen YS, et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11:348–54. https://doi.org/10.1021/nl1042006.

Article  Google Scholar 

Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: a review. J Control Release. 2014;193:122–38. https://doi.org/10.1016/j.jconrel.2014.05.029.

Article  Google Scholar 

Mariniello A, et al. Platinum-based chemotherapy attenuates the effector response of CD8 T cells to concomitant PD-1 blockade. Clin Cancer Res. 2024;30:1833–45. https://doi.org/10.1158/1078-0432.CCR-23-1316.

Article  Google Scholar 

Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67. https://doi.org/10.1038/s41416-020-01048-4.

Article  Google Scholar 

Wherry EJ, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4:225–34. https://doi.org/10.1038/ni889.

Article  Google Scholar 

Gupta S, Kim CH, Tsuruo T, Gollapudi S. Preferential expression and activity of multidrug resistance gene 1 product (P-glycoprotein), a functionally active efflux pump, in human CD8+ T cells: a role in cytotoxic effector function. J Clin Immunol. 1992;12:451–8. https://doi.org/10.1007/BF00918857.

Article  Google Scholar 

Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T therapies in solid tumors: opportunities and challenges. Curr Oncol Rep. 2023;25:479–89. https://doi.org/10.1007/s11912-023-01380-x.

Article  Google Scholar 

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. https://doi.org/10.1038/s41408-021-00459-7.

Article  MathSciNet  Google Scholar 

Wang L, et al. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett. 2024;591: 216871. https://doi.org/10.1016/j.canlet.2024.216871.

Article  Google Scholar 

Khatib S, Pomyen Y, Dang H, Wang XW. Understanding the cause and consequence of tumor heterogeneity. Trends Cancer. 2020;6:267–71. https://doi.org/10.1016/j.trecan.2020.01.010.

Article  Google Scholar 

McQuerry JA, Chang JT, Bowtell DDL, Cohen A, Bild AH. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J Mol Med (Berl). 2017;95:1167–78. https://doi.org/10.1007/s00109-017-1587-4.

Article  Google Scholar 

Sun XX, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin. 2015;36:1219–27. https://doi.org/10.1038/aps.2015.92.

Article  Google Scholar 

Comments (0)

No login
gif