Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete JJ. Snake venomics of the lanceheadpitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71. https://doi.org/10.1021/pr800332p.
Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, Nicolau CA, Chalkidis HM, Mourão RH, Grazziotin FG, Rokyta DR, Gibbs HL, Valente RH, Junqueira-de-Azevedo IL. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics. 2018;181:60–72. https://doi.org/10.1016/j.jprot.2018.03.032.
Antunes TC, Yamashita KM, Barbaro KC, Saiki M, Santoro ML. Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon. 2010;56(8):1443–58. https://doi.org/10.1016/j.toxicon.2010.08.011.
Arbuckle K. From molecules to macroevolution: venom as a model system for evolutionary biology across levels of life. Toxicon X. 2020;6:100034. https://doi.org/10.1016/j.toxcx.2020.100034.
Article PubMed PubMed Central Google Scholar
Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci. 1992;89(16):7717–21. https://doi.org/10.1073/pnas.89.16.7717.
Article PubMed PubMed Central Google Scholar
Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc R Soc B Biol Sci. 2009;276(1666):2443–9. https://doi.org/10.1098/rspb.2009.0048.
Bayona-Serrano JD, Viala VL, Rautsaw RM, Schramer TD, Barros-Carvalho GA, NishiyamaJr MY, Freitas-de-Sousa LA, Moura-da-Silva AM, Parkinson CL, Grazziotin FG, Junqueira-de-Azevedo IL. Replacement and parallel simplification of nonhomologous proteinases maintain venom phenotypes in rear-fanged snakes. Mol Biol Evol. 2020;37(12):3563–75. https://doi.org/10.1093/molbev/msaa192.
Article PubMed PubMed Central Google Scholar
Biardi JE, Chien DC, Coss RG. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins. J Chem Ecol. 2006;32:137–54. https://doi.org/10.1007/s10886-006-9357-8.
Biardi JE, Ho CYL, Marcinczyk J, Nambiar KP. Isolation and identification of a snake venom metalloproteinase inhibitor from California ground squirrel (Spermophilus beecheyi) blood sera. Toxicon. 2011;58(6–7):486–93. https://doi.org/10.1016/j.toxicon.2011.08.009.
Biardi JE, Coss RG. Rock squirrel (Spermophilus variegatus) blood sera affectsproteolytic and hemolytic activities of rattlesnake venoms. Toxicon. 2011;57(2):323–31. https://doi.org/10.1016/j.toxicon.2010.12.011.
Borja M, Castañeda G, Espinosa J, Neri E, Carbajal A, Clement H, García O, Alagon A. Mojave rattlesnake (Crotalus scutulatus scutulatus) with type B venom from Mexico. Copeia. 2014;2014(1):7–13.
Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, Espinosa-Fematt J, Sáenz-Mata J, Flores-Martínez E, Alagón A, Castañeda-Gaytán G. Ontogenetic change in the venom of Mexican black-tailed rattlesnakes (Crotalus molossus nigrescens). Toxins. 2018;10(12):501. https://doi.org/10.3390/toxins10120501.
Article PubMed PubMed Central Google Scholar
Bracci L, Lozzi L, Lelli B, Pini A, Neri P. Mimotopes of the nicotinic receptor binding site selected by a combinatorial peptide library. Biochemistry. 2001;40(22):6611–9. https://doi.org/10.1021/bi0023201.
Calvete JJ. Venomics: integrative venom proteomics and beyond. Biochem J. 2017;474(5):611–34. https://doi.org/10.1042/BCJ20160577.
Calvete JJ. Snake venomics at the crossroads between ecological and clinical toxinology. Biochemist. 2019;41(6):28–33. https://doi.org/10.1042/BIO04106028.
Casewell NR, Jackson TN, Laustsen AH, Sunagar K. Causes and consequences of snake venom variation. Trends Pharmacol Sci. 2020;41(8):570–81. https://doi.org/10.1016/j.tips.2020.05.006.
Article PubMed PubMed Central Google Scholar
Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol. 2011;28(9):2637–49. https://doi.org/10.1093/molbev/msr091.
Casewell NR, Wagstaff SC, Wüster W, Cook DA, Bolton FM, King SI, Pla D, Sanz L, Calvete JJ, Harrison RA. Medically important differences in snake venom composition are dictated by distinct postgenomicmechanisms. Proc Natl Acad Sci. 2014;111(25):9205–10. https://doi.org/10.1073/pnas.1405484111.
Article PubMed PubMed Central Google Scholar
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29. https://doi.org/10.1016/j.tree.2012.10.020.
Casewell NR. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon. 2012;60(4):449–54. https://doi.org/10.1016/j.toxicon.2012.02.006.
Catanese JJ, Kress LF. Opossum serum Alpha 1-proteinase inhibitor: Purification, linear sequence, and resistance to inactivation by rattlesnake venom metalloproteinase. Biochemistry. 1993;32(2):509–15. https://doi.org/10.1021/bi00053a015.
Chang LS, Huang HB, Lin SR. The multiplicity of cardiotoxins from Najanajaatra (Taiwan cobra) venom. Toxicon. 2000;38(8):1065–76. https://doi.org/10.1016/S0041-0101(99)00218-4.
Chetty N, Du A, Hodgson WC, Winkel K, Fry BG. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms. Toxicon. 2004;44(2):193–200. https://doi.org/10.1016/j.toxicon.2004.05.022.
Chopra G, Kumar T. A study of food and feeding habits of blue peafowl, PavoCristatus Linnaeus, 1758 in District Kurukshetra, Haryana (India). Int J Res Stud Biosci. 2014;2:11–6.
Chuman Y, Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Tan NH, Fukumaki Y, Shimohigashi Y, Ducancel F, Boulain JC, Ménez A. Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes. Toxicon. 2000;38(3):449–62. https://doi.org/10.1016/S0041-0101(99)00165-8.
Cipriani V, Debono J, Goldenberg J, Jackson TN, Arbuckle K, Dobson J, Koludarov I, Li B, Hay C, Dunstan N, Allen L. Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja). Comp Biochem Physiol C: Toxicol Pharmacol. 2017;197:53–60. https://doi.org/10.1016/j.cbpc.2017.04.007.
Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379(6565):537–40. https://doi.org/10.1038/379537a0.
Davies EL, Arbuckle K. Coevolution of snake venom toxic activities and diet: evidence that ecological generalism favours toxicological diversity. Toxins. 2019;11(12):711. https://doi.org/10.3390/toxins11120711.
Article PubMed PubMed Central Google Scholar
Dawkins R, Krebs JR. Arms races between and within species. Proc R Soc Lond Ser B Biol Sci. 1979;205(1161):489–511. https://doi.org/10.1098/rspb.1979.0081.
Dellisanti C, Yao Y, Stroud JC, Wang ZZ, Chen L. Structural determinants for α-neurotoxin sensitivity in muscle nAChR and their implications for the gating mechanism. Channels. 2007;1(4):234–7. https://doi.org/10.4161/chan.4909.
Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nat Neurosci. 2007;10(8):953–62. https://doi.org/10.1038/nn1942.
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic int
Comments (0)