Evolution and plasticity of snake venom: a systematic review

Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete JJ. Snake venomics of the lanceheadpitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71. https://doi.org/10.1021/pr800332p.

Article  PubMed  Google Scholar 

Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, Nicolau CA, Chalkidis HM, Mourão RH, Grazziotin FG, Rokyta DR, Gibbs HL, Valente RH, Junqueira-de-Azevedo IL. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics. 2018;181:60–72. https://doi.org/10.1016/j.jprot.2018.03.032.

Article  PubMed  Google Scholar 

Antunes TC, Yamashita KM, Barbaro KC, Saiki M, Santoro ML. Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon. 2010;56(8):1443–58. https://doi.org/10.1016/j.toxicon.2010.08.011.

Article  PubMed  Google Scholar 

Arbuckle K. From molecules to macroevolution: venom as a model system for evolutionary biology across levels of life. Toxicon X. 2020;6:100034. https://doi.org/10.1016/j.toxcx.2020.100034.

Article  PubMed  PubMed Central  Google Scholar 

Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci. 1992;89(16):7717–21. https://doi.org/10.1073/pnas.89.16.7717.

Article  PubMed  PubMed Central  Google Scholar 

Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc R Soc B Biol Sci. 2009;276(1666):2443–9. https://doi.org/10.1098/rspb.2009.0048.

Article  Google Scholar 

Bayona-Serrano JD, Viala VL, Rautsaw RM, Schramer TD, Barros-Carvalho GA, NishiyamaJr MY, Freitas-de-Sousa LA, Moura-da-Silva AM, Parkinson CL, Grazziotin FG, Junqueira-de-Azevedo IL. Replacement and parallel simplification of nonhomologous proteinases maintain venom phenotypes in rear-fanged snakes. Mol Biol Evol. 2020;37(12):3563–75. https://doi.org/10.1093/molbev/msaa192.

Article  PubMed  PubMed Central  Google Scholar 

Biardi JE, Chien DC, Coss RG. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins. J Chem Ecol. 2006;32:137–54. https://doi.org/10.1007/s10886-006-9357-8.

Article  PubMed  Google Scholar 

Biardi JE, Ho CYL, Marcinczyk J, Nambiar KP. Isolation and identification of a snake venom metalloproteinase inhibitor from California ground squirrel (Spermophilus beecheyi) blood sera. Toxicon. 2011;58(6–7):486–93. https://doi.org/10.1016/j.toxicon.2011.08.009.

Article  PubMed  Google Scholar 

Biardi JE, Coss RG. Rock squirrel (Spermophilus variegatus) blood sera affectsproteolytic and hemolytic activities of rattlesnake venoms. Toxicon. 2011;57(2):323–31. https://doi.org/10.1016/j.toxicon.2010.12.011.

Article  PubMed  Google Scholar 

Borja M, Castañeda G, Espinosa J, Neri E, Carbajal A, Clement H, García O, Alagon A. Mojave rattlesnake (Crotalus scutulatus scutulatus) with type B venom from Mexico. Copeia. 2014;2014(1):7–13.

Article  Google Scholar 

Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, Espinosa-Fematt J, Sáenz-Mata J, Flores-Martínez E, Alagón A, Castañeda-Gaytán G. Ontogenetic change in the venom of Mexican black-tailed rattlesnakes (Crotalus molossus nigrescens). Toxins. 2018;10(12):501. https://doi.org/10.3390/toxins10120501.

Article  PubMed  PubMed Central  Google Scholar 

Bracci L, Lozzi L, Lelli B, Pini A, Neri P. Mimotopes of the nicotinic receptor binding site selected by a combinatorial peptide library. Biochemistry. 2001;40(22):6611–9. https://doi.org/10.1021/bi0023201.

Article  PubMed  Google Scholar 

Calvete JJ. Venomics: integrative venom proteomics and beyond. Biochem J. 2017;474(5):611–34. https://doi.org/10.1042/BCJ20160577.

Article  PubMed  Google Scholar 

Calvete JJ. Snake venomics at the crossroads between ecological and clinical toxinology. Biochemist. 2019;41(6):28–33. https://doi.org/10.1042/BIO04106028.

Article  Google Scholar 

Casewell NR, Jackson TN, Laustsen AH, Sunagar K. Causes and consequences of snake venom variation. Trends Pharmacol Sci. 2020;41(8):570–81. https://doi.org/10.1016/j.tips.2020.05.006.

Article  PubMed  PubMed Central  Google Scholar 

Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol. 2011;28(9):2637–49. https://doi.org/10.1093/molbev/msr091.

Article  PubMed  Google Scholar 

Casewell NR, Wagstaff SC, Wüster W, Cook DA, Bolton FM, King SI, Pla D, Sanz L, Calvete JJ, Harrison RA. Medically important differences in snake venom composition are dictated by distinct postgenomicmechanisms. Proc Natl Acad Sci. 2014;111(25):9205–10. https://doi.org/10.1073/pnas.1405484111.

Article  PubMed  PubMed Central  Google Scholar 

Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29. https://doi.org/10.1016/j.tree.2012.10.020.

Article  PubMed  Google Scholar 

Casewell NR. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon. 2012;60(4):449–54. https://doi.org/10.1016/j.toxicon.2012.02.006.

Article  PubMed  Google Scholar 

Catanese JJ, Kress LF. Opossum serum Alpha 1-proteinase inhibitor: Purification, linear sequence, and resistance to inactivation by rattlesnake venom metalloproteinase. Biochemistry. 1993;32(2):509–15. https://doi.org/10.1021/bi00053a015.

Article  PubMed  Google Scholar 

Chang LS, Huang HB, Lin SR. The multiplicity of cardiotoxins from Najanajaatra (Taiwan cobra) venom. Toxicon. 2000;38(8):1065–76. https://doi.org/10.1016/S0041-0101(99)00218-4.

Article  PubMed  Google Scholar 

Chetty N, Du A, Hodgson WC, Winkel K, Fry BG. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms. Toxicon. 2004;44(2):193–200. https://doi.org/10.1016/j.toxicon.2004.05.022.

Article  PubMed  Google Scholar 

Chopra G, Kumar T. A study of food and feeding habits of blue peafowl, PavoCristatus Linnaeus, 1758 in District Kurukshetra, Haryana (India). Int J Res Stud Biosci. 2014;2:11–6.

Google Scholar 

Chuman Y, Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Tan NH, Fukumaki Y, Shimohigashi Y, Ducancel F, Boulain JC, Ménez A. Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes. Toxicon. 2000;38(3):449–62. https://doi.org/10.1016/S0041-0101(99)00165-8.

Article  PubMed  Google Scholar 

Cipriani V, Debono J, Goldenberg J, Jackson TN, Arbuckle K, Dobson J, Koludarov I, Li B, Hay C, Dunstan N, Allen L. Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja). Comp Biochem Physiol C: Toxicol Pharmacol. 2017;197:53–60. https://doi.org/10.1016/j.cbpc.2017.04.007.

Article  PubMed  Google Scholar 

Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379(6565):537–40. https://doi.org/10.1038/379537a0.

Article  PubMed  Google Scholar 

Davies EL, Arbuckle K. Coevolution of snake venom toxic activities and diet: evidence that ecological generalism favours toxicological diversity. Toxins. 2019;11(12):711. https://doi.org/10.3390/toxins11120711.

Article  PubMed  PubMed Central  Google Scholar 

Dawkins R, Krebs JR. Arms races between and within species. Proc R Soc Lond Ser B Biol Sci. 1979;205(1161):489–511. https://doi.org/10.1098/rspb.1979.0081.

Article  Google Scholar 

Dellisanti C, Yao Y, Stroud JC, Wang ZZ, Chen L. Structural determinants for α-neurotoxin sensitivity in muscle nAChR and their implications for the gating mechanism. Channels. 2007;1(4):234–7. https://doi.org/10.4161/chan.4909.

Article  PubMed  Google Scholar 

Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nat Neurosci. 2007;10(8):953–62. https://doi.org/10.1038/nn1942.

Article  PubMed  Google Scholar 

Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic int

Comments (0)

No login
gif