Effect of cerium oxide and silicon dioxide nanoparticles in combating heavy metal stress in plants

Adrees M, Khan ZS, Rehman MZU, Rizwan M, Ali S. Foliar spray of silicon nanoparticles improved the growth and minimized cadmium (Cd) in wheat under combined Cd and water-limited stress. Environ Sci Pollut Res. 2022;29(51):77321–32. https://doi.org/10.1007/s11356-022-21238-2.

Article  CAS  Google Scholar 

Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: a clinical review of immunology, epidemiology, exposure, and treatment. Contact Derm. 2019;81(4):227–41.

Google Scholar 

Ahmed S, Iqbal M, Ahmad Z, Iqbal MA, Artyszak A, Sabagh AE, Alharby HF, Hossain A. Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils. Environ Sci Pollut Res. 2023;30(14):41002–13. https://doi.org/10.1007/s11356-023-25189-0.

Article  CAS  Google Scholar 

Ahmed T, Masood HA, Noman M, Al-Huqail AA, Alghanem SM, Khan MM, et al. Biogenic silicon nanoparticles mitigate cadmium (Cd) toxicity in rapeseed (Brassica napus L.) by modulating the cellular oxidative stress metabolism and reducing Cd translocation. J Hazard Mater. 2023;459:132070. https://doi.org/10.1016/j.jhazmat.2023.132070.

Article  CAS  PubMed  Google Scholar 

Ali S, Rizwan M, Hussain A, Ur Rehman MZ, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). PPB. 2019;140:1–8.

CAS  PubMed  Google Scholar 

Ali H, Khan E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health. HERA. 2019;25(6):1353–76. https://doi.org/10.1080/10807039.2018.1469398.

Article  CAS  Google Scholar 

Ali M, Mu’azu L. A review on the effects of cadmium stress on growth and development of plants. South Asian ResJ Biol Appl Biosci. 2020;2:33–7.

Google Scholar 

Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. Planta. 2024;259(5):103. https://doi.org/10.1007/s00425-024-04378-2.

Article  CAS  PubMed  Google Scholar 

Alsamadany H, Alharby HF, Al-Zahrani HS, Alzahrani YM, Almaghamsi AA, Abbas G, Farooq MA. Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Front Plant Sci. 2022;13:989504. https://doi.org/10.3389/fpls.2022.989504.

Article  PubMed  PubMed Central  Google Scholar 

Amari T, Ghnaya T, Abdelly C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot. 2017;111:99–110. https://doi.org/10.1016/j.sajb.2017.03.011.

Article  CAS  Google Scholar 

Anjum NA, Sing HP, Khan MIR. Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res. 2015;22:3361–82. https://doi.org/10.1007/s11356-014-3849-9.

Article  CAS  Google Scholar 

Arora H, Singh RK, Sharma S, Sharma N, Panchal A, Das T, Prasad M. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Rep. 2022;41(10):1931–44. https://doi.org/10.1007/s00299-022-02901-x.

Article  CAS  PubMed  Google Scholar 

Asati A, Pichhode M, Nikhil K. Effect of heavy metals on plants: an overview. IJAIEM. 2016;5(3):56–66.

Google Scholar 

Asgher M, Rehaman A, Ul Islam SN, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. Environmental Pollut. 2023. https://doi.org/10.1016/j.envpol.2023.122886.

Article  Google Scholar 

Ashraf S, Ahmad SR, Ashraf S, Murtaza A, Ramzan S, Munir B, Majid Z. (2023) Definition and Chemical Prologue of Heavy Metals: Past, Present and Future Scenarios. In: Heavy Metals in the Environment: Management Strategies for Global Pollution. American Chemical Society pp 25–48 https://doi.org/10.1021/bk-2023-1456.ch002

Ayub MA, Ahmad HR, Ur Rehman MZ, Waraich EA. Cerium oxide nanoparticles alleviate stress in wheat grown on Cd contaminated alkaline soil. Chemosphere. 2023;338:139561. https://doi.org/10.1016/j.chemosphere.2023.139561.

Article  CAS  PubMed  Google Scholar 

Ayub MA, Rehman MZ, Ahmad HR, Rico CM, Abbasi GH, Umar W, Wright AL, Nadeem M, Fox JP, Rossi L. Divergent effects of cerium oxide nanoparticles alone and in combination with cadmium on nutrient acquisition and the growth of maize (Zea mays). Front Plant Sci. 2023;14:1151786. https://doi.org/10.3389/fpls.2023.1151786.

Article  PubMed  PubMed Central  Google Scholar 

Ayub MA, Ur Rehman MZ, Ahmad HR, Fox JP, Clubb P, Wright AL, Rossi L. Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. Environmental Pollut. 2023. https://doi.org/10.1016/j.envpol.2023.121137.

Article  Google Scholar 

Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. Environ Sci Pollut Res. 2023;30(18):54223–33. https://doi.org/10.1007/s11356-023-25959-w.

Article  CAS  Google Scholar 

Bali AS, Sidhu GP. Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: a review. Chemosphere. 2021;283:131050. https://doi.org/10.1016/j.chemosphere.2021.131050.

Article  CAS  PubMed  Google Scholar 

Baloch MY, Talpur SA, Talpur HA, Iqbal J, Mangi SH, Memon S. Effects of arsenic toxicity on the environment and its remediation techniques: a review. J Water Environ Technol. 2020;18(5):275–89. https://doi.org/10.2965/jwet.19-130.

Article  Google Scholar 

Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ. 2016;563:956–64.

PubMed  Google Scholar 

Bhalerao SA, Sharma AS. Chromium: as an environmental pollutant. Int J Curr Microbiol App Sci. 2015;4(4):732–46.

CAS  Google Scholar 

Biswas A, Pal S, Paul S. Silicon as a powerful element for mitigation of cadmium stress in rice: a review for global food safety. Plant Stress. 2023. https://doi.org/10.1016/j.stress.2023.100237.

Article  Google Scholar 

Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr). Environ Sci: Nano. 2017;4(5):1086–94.

CAS  Google Scholar 

Chandra J, Chauhan R, Korram J, Satnami ML, Keshavkant S. Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Sci Horti. 2020;260:108885. https://doi.org/10.1016/j.scienta.2019.108885.

Article  CAS  Google Scholar 

Chen BJ, Xu J, Wang X. Trophic transfer without biomagnification of cadmium in a soybean-dodder parasitic system. Plants. 2021;10(12):2690.

CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Pan Z, Zhao W, Zhou Y, Rui Y, Jiang C, Zhao L. Engineering Climate-Resilient Rice Using a Nanobiostimulant-based “Stress Training” Strategy. ACS Nano. 2023;17(11):10760–73.

CAS  PubMed  Google Scholar 

Cui J, Li Y, Jin Q, Li F. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ Sci Nano. 2020;7(1):162–71. https://doi.org/10.1039/C9EN01035A.

Article  CAS  Google Scholar 

Cui J, Liu T, Li F, Yi J, Liu C, Yu H. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut. 2017;228:363–9. https://doi.org/10.1016/j.envpol.2017.05.014.

Article  CAS  PubMed  Google Scholar 

Czajka KM. Effects of nickel toxicity on seed germination and expression of genes associated with nickel resistance in Populus tremuloides (Doctoral dissertation, Laurentian University of Sudbury). https://laurentian.scholaris.ca/handle/10219/3119 (2018)

David OA, Labulo AH, Hassan I, Olawuni I, Oseghale CO, Terna AD, Ajayi OO, Ayegbusi SA, Owolabi MO. Complexation and immobilization of arsenic in maize using green synthesized silicon nanoparticles (SiNPs). Sci Rep. 2024;14(1):6176. https://doi.org/10.1038/s41598-024-56924-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Rosa-Alvarez G, Peralta-Videa JR. Chemical transformation and mechanisms of ENMs transport in plants. In: Physicochemical Interactions of Engineered Nanoparticles and Plants. Academic Press, pp 233–260. (2023) https://doi.org/10.1016/B978-0-323-90558-9.00009-7

De Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MA, Hozzein WN, Selim S, Matos M, AbdElgawad H. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminium in maize grown on acidic soil. Sci Total Environ. 2019;693:133636. https://doi.org/10.1016/j.scitotenv.2019.133636.

Article  CAS  PubMed  Google Scholar 

Dutta A, Patra A, Jatav HS, Jatav SS, Singh SK, Sathyanarayana E, Singh P. Toxicity of cadmium in soil-plant-human continuum and its bioremediation techniques. J Soil Contam. 2020.

Comments (0)

No login
gif