Advanced tech improves surgical planning for Osteogenesis Imperfecta (OI).
•CAD and CT enable precise virtual and physical surgery simulations.
•3D-printed models assist in complex bone reconstruction procedures.
•Two-stage surgery leads to significant functional improvement in OI patient.
•Personalized solutions reduce complications and enhance surgical outcomes.
AbstractBackground and ObjectiveThe paper aims to demonstrate the integration of advanced technologies, including computed tomography (CT), computer-aided design (CAD), and additive manufacturing, for precise surgical planning and personalized solutions in the management of Osteogenesis Imperfecta (OI). The main research question is to determine how these technologies can be utilized to achieve successful surgical outcomes in severe cases of OI, such as the one presented in this study.
MethodsThe study involved an 11-year-old child with OI who suffered from a closed right diaphyseal femur fracture and severe lower extremity abnormalities. Virtual and physical planning procedures were carried out using CAD software based on patient-specific CT models. The length of the proximal and distal segments, cutting planes, and osteotomies were precisely defined to achieve the desired surgical corrections. Additionally, 3D models of the bones and bony segments were manufactured using additive manufacturing to physically recreate the surgical procedure.
ResultsThe surgical treatment involved the correction of the right femur fracture and the left tibia and fibula in the first procedure, followed by the correction of the remaining segments in a second procedure. The Fassier-Duval telescopic intramedullary nail was used to stabilize the fracture and the osteotomy sites. The entire treatment course, from the first surgery to achieving partial weight-bearing, spanned approximately 15 weeks, including the two surgical procedures and staged rehabilitation. Post-surgery, the patient showed significant functional improvement, including the ability to stand and walk with assistance.
ConclusionThe integration of advanced technologies in surgical planning for OI patients has shown promising results, leading to improved patient outcomes and reduced complications. This approach has the potential to enhance the accuracy of preoperative planning and provide personalized and precise solutions, ultimately elevating the overall quality of healthcare for OI patients.
Graphical abstractComputer aided design
Additive manufacturing
Surgery planning
Osteogenesis Imperfecta
© 2025 AGBM. Published by Elsevier Masson SAS.
Comments (0)